[1] 甘文来. 5G无线通信技术概念及相关应用[J], 中国新通信, 2021, 23(02): 19-20.
[2] MAQBOOL M G H, BASHIR A, USMAN A, et al. Enhancing through plane thermal conductivity of fluoropolymer composite by developing in situ nanonurethane linkage at graphene-graphene interface[J]. Nano Research, 2020, 13(10): 2741-2748.
[3] 韩蒙蒙,张阔,李敬.有机硅基热界面材料的研究进展[J]. 有机硅材料, 2023, 37(06): 73-78..
[4] LOW Z X, BUDD P M, MCKEOWN N B, et al. Gas Permeation Properties, Physical Aging, and Its Mitigation in High Free Volume Glassy Polymers[J]. Chemical Reviews, 2018, 118(12): 5871-5911.
[5] 马儒军. 基于高分子材料的的高效芯片热管理系统[C].中国稀土学会2021学术年会, 2021: 1.
[6] 丁声昌. 有机硅热界面材料中阻尼、回弹和导热耦合关系研究[D]. 2023.
[7] BASHIR A, MAQBOOL M, LV R C, et al. Surface modified boron nitride towards enhanced thermal and mechanical performance of thermoplastic polyurethane composite[J]. Composites Part B-Engineering, 2021, 218: 9.
[8] 马星星. 含铈化合物提高硅凝胶耐老化性能的研究[D]. 2021.
[9] 雷志斌, 邵勇, 刘智明. 拉曼光谱法检测FEP电线绝缘材料老化程度的可行性研究[J] 质量与认证, 2023(07): 70-72.
[10] 丁孝均, 赵云峰. 界面导热材料研究进展[J]. 宇航材料工艺, 2010, 40(06): 5-9.
[11] XU X F, CHEN J, ZHOU J; et al. Thermal Conductivity of Polymers and Their Nanocomposites[J]. Advanced Materials, 2018, 30(17): 1705544.
[12] RODGERS P, EVELOY V, RAHIM E, et al. Thermal Performance and Reliability of Thermal Interface Materials: A Review[C]. International Conference on Thermal, 2006.
[13] XU W X, LIANG X G, XU X H, et al. Molecular dynamics simulation of effect of crosslinking on thermal conductivity of silicone rubber[J]. Acta Physica Sinica, 2020, 69(19): 8.
[14] WEI Z, XIE W, GE B, et al. Enhanced thermal conductivity of epoxy composites by constructing aluminum nitride honeycomb reinforcements[J], Composites Science and Technology, 2020, 199.
[15] 陈冉冉, 郭成, 陈砚朋, 等. 低迁移绝缘导热硅脂界面材料的制备及其性能研究[J] 材料导报, 2021, 35(20): 20176-20182+20189.
[16] 陈维斌. 导热硅凝胶的研究与应用进展[J] 中国胶粘剂, 2022, 31(07): 56-61+67.
[17] HAMADA T, GOTO T, TAKASE S, et al. Structure–Thermal Property Relationships of Polysilsesquioxanes for Thermal Insulation Materials[J], ACS Applied Polymer Materials, 2022, 4(4),2851-2859.
[18] NAZIR H, BATOOL M, BOLIVAR OSORIO F J, et al. Recent developments in phase change materials for energy storage applications: A review[J]. International Journal of Heat and Mass Transfer, 2019, 129: 491-523.
[19] HANSSON J, NILSSON T M J, YE L L, et al. Novel nanostructured thermal interface materials: a review[J]. International Materials Reviews, 2018, 63(1): 22-45.
[20] OTIABA K C, EKERE N N, BHATTI R S, et al. Thermal interface materials for automotive electronic control unit: Trends, technology and R&D challenges[J]. Microelectronics Reliability, 2011, 51(12): 2031-2043.
[21] RAZEEB K M, DALTON E, CROSS G L W, et al. Present and future thermal interface materials for electronic devices[J]. International Materials Reviews, 2018, 63(1): 1-21.
[22] 杨斌, 孙蓉. 热界面材料产业现状与研究进展[J] 中国基础科学, 2020, 22(02): 56-62.
[23] ROY A, BOUGHER T L, GENG R, et al. Thermal Conductance of Poly(3-methylthiophene) Brushes[J]. ACS Applied Materials & Interfaces, 2016, 8(38): 25578-25585.
[24] CHOY C L, WONG Y W, YANG G W, et al. Elastic modulus and thermal conductivity of ultradrawn polyethylene[J], 1999, 37(23): 3359-3367.
[25] SHEN S, HENRY A, TONG J, et al. Polyethylene nanofibres with very high thermal conductivities[J], Nature Nanotech ,2010, 5(4):251-255.
[26] CHEN Y W, GUO Y H, BATRA S, et al. Transparent and through thickness conductive polystyrene films using external magnetic fields for "Z" alignment of nickel nanoparticles[J]. Nanoscale, 2015, 7(35): 14636-14642.
[27] SUH D, MOON C M, KIM D, et al. Ultrahigh Thermal Conductivity of Interface Materials by Silver-Functionalized Carbon Nanotube Phonon Conduits[J]. Advanced Materials, 2016, 28(33): 7220.
[28] WANG S L, CHENG Y, WANG R R, et al. Highly Thermal Conductive Copper Nanowire Composites with Ultralow Loading: Toward Applications as Thermal Interface Materials[J]. ACS Applied Materials & Interfaces, 2014, 6(9): 6481-6486.
[29] GU J W, GUO Y Q, YANG X T, et al. Synergistic improvement of thermal conductivities of polyphenylene sulfide composites filled with boron nitride hybrid fillers[J]. Composites Part A Applied Science and Manufacturing, 2017, 95: 267-273.
[30] LIU Z D, CHEN Y P, LI Y F, et al. Graphene foam-embedded epoxy composites with significant thermal conductivity enhancement[J]. Nanoscale, 2019, 11(38): 17600-17606.
[31] KWON Y J, PARK J B, JEON Y P, et al. A Review of Polymer Composites Based on Carbon Fillers for Thermal Management Applications: Design, Preparation, and Properties[J]. Polymers, 2021, 13(8).
[32] YAO Y M, ZENG X L, GUO K, et al. The effect of interfacial state on the thermal conductivity of functionalized Al2O3 filled glass fibers reinforced polymer composites[J]. Composites Part A Applied Science and Manufacturing , 2015, 69: 49-55.
[33] HAN Y X, SHI X T, YANG X T, et al. Enhanced thermal conductivities of epoxy nanocomposites via incorporating in-situ fabricated hetero-structured SiC-BNNS fillers[J]. Composites Science and Technology, 2020, 187: 7.
[34] FU C, YAN C, REN L, et al. Improving thermal conductivity through welding boron nitride nanosheets onto silver nanowires via silver nanoparticles[J]. Composites Science and Technology, 2019, 177: 118-126.
[35] 范元超, 陈孝敬, 黄光造, 等. 基于拉曼光谱的电线绝缘材料老化状态评估[J], 2022(010): 042.
[36] SU D. Silicone rubber thermal aging performance for cables and accessories[J]. Journal of Materials Science: Materials in Electronics, 2024, 35(5), 328.
[37] 郑峰. 硅橡胶绝缘材料老化及憎水恢复性的正电子研究[D]. 武汉大学, 2018.
[38] DAL S L B. Degradation mechanisms of siloxane-based thermal interface materials under reliability stress conditions[C]. 2004 IEEE International Reliability Physics Symposium. Proceedings, 2004: 537-542.
[39] 付秋兰, 吴向荣, 温茂添. 缩合型室温硫化硅橡胶耐热性的研究进展[J] 有机硅材料, 2003(01): 28-31+51.
[40] YU J, ZHANG Z J, REN W F, et al. Aging Analysis of Semiconductive Silicone Rubber for 10 kV Cold-Shrink Cable Accessories[J]. Energies, 2024, 17(3): 708.
[41] TOMER N S, DELOR-JESTIN F, FREZET L, et al. Oxidation, Chain Scission and Cross-Linking Studies of Polysiloxanes upon Ageings[J]. Open Journal of Organic Polymer Materials, 2012, 02(02): 13-22.
[42] HUANG Z, LIN H S, PENG X Y, et al. Aging Behaviors of Silicone Rubber Composite Materials under Outdoor Environment[J]. Journal of Wuhan University of Technology-Materials Science Edition, 2016, 31(6): 1289-1293.
[43] FAN W L J L. Rapid evaluation of thermal aging of a carbon fiber laminated epoxy composite[J]. Polymer Composites, 2008, 35(5): 975-984.
[44] 杨俊伟. 硅橡胶材料老化特性无损检测方法研究[D]. 2021.
[45] BI M Y J, CHEN X, et al. The Research on Corona Aging Silicone Rubber Materials’ NMR Characteristics[J]. IEEE Access, 2020, 8: 128407-128415.
[46] 曾磊磊, 张宇, 曾鑫, 等. 复合绝缘子硅橡胶伞裙老化状态评估方法综述[J]. 电瓷避雷器, 2022, (02): 139-145.
[47] SOMERS A E, BASTOW T J, BURGAR M I, et al. Quantifying rubber degradation using NMR[J]. Polymer Degradation and Stability, 2000, 70(1): 31-37.
[48] KANEKO T, ITO S, MINAKAWA T, et al. Degradation mechanisms of silicone rubber under different aging conditions[J]. Polymer Degradation and Stability, 2019, 168.
[49] HOMMA H, KUROYAGI T, IZUMI K, et al. Evaluation of surface degradation of silicone rubber using gas chromatography/mass spectroscopy[J], IEEE Transactions on Power Delivery, 2000, 15(2): 796-803.
[50] KATZ S, PEVZNER A, SHEPELEV V, et al. Activated carbon aging processes characterization by Raman spectroscopy[J], MRS Advances , 2022, 7( 12): 248.
[51] RAMAN C V, KRISHNAN K S. A New Type of Secondary Radiation[J], Nature, 1928, 121( 3048): 501-502.
[52] FLEISCHMANN M, HENDRA P J, MCQUILLAN A J. Raman spectra of pyridine adsorbed at a silver electrode[J]. Chemical Physics Letters, 1974, 26(2): 163-166.
[53] JEANMAIRE D L, DUYNE R P V. Surface Raman Spectroelectrochemistry: Part I. Heterocyclic, Aromatic, and Aliphatic Amines Adsorbed on the Anodized Silver Electrode[J], Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1977, 84(1):1-20.
[54] ALBRECHT M G, CREIGHTON J A J C I. Anomalously intense Raman spectra of pyridine at a silver electrode[J], Journal of the American Chemical Society, 2002, 99(15):5215-5217.
[55] 周彬斌. SERS活性针灸针的构筑及其在复杂检测环境中的性能研究[D]. 中国科学技术大学, 2018.
[56] LEE H K, LEE Y H, KOH C S L, et al. Designing surface-enhanced Raman scattering (SERS) platforms beyond hotspot engineering: emerging opportunities in analyte manipulations and hybrid materials[J]. Chamical society reviews, 2019, 48(3): 731-756.
[57] GAO J, THOMAS A K, JOHNSON R, et al. Spatially Resolving Ordered and Disordered Conformers and Photocurrent Generation in Intercalated Conjugated Polymer/Fullerene Blend Solar Cells[J]. Chemistry of Materials, 2014, 26(15): 4395-4404.
[58] SVENNINGSSON L, LIN Y C, KARLSSON M, et al. Molecular Orientation Distribution of Regenerated Cellulose Fibers Investigated with Polarized Raman Spectroscopy[J]. Macromolecules, 2019, 52(10): 3918-3924.
[59] KIDA T, HIEJIMA Y, NITTA K-h. Rheo-Raman Spectroscopic Study on Uniaxial Deformation Behavior of High-Density Polyethylene Solids with Various Molecular Weight Distributions[J]. Macromolecules, 2019, 52(12): 4590-4600.
[60] MANNANOV A A, BRUEVICH V V, FELDMAN E V, et al. Real-Time Tracking of Polymer Crystallization Dynamics in Organic Bulk Heterojunctions by Raman Microscopy[J]. The Journal of Physical Chemistry C, 2018, 122(34): 19289-19297.
[61] ZHANG Z, QIN J, DIAO H, et al. Janus-like asymmetrically oxidized graphene: Facile synthesis and distinct liquid crystal alignment at the oil/water interface[J], Carbon , 2020, 161: 316-322.
[62] 陈争. 基于红外-拉曼光谱的常见爆炸物快速识别分类研究[D]. 中国人民公安大学, 2023.
[63] 李德方. 硅橡胶材质的铁路接触网线抗环境电晕与老化能力研究[J], 粘接, 2024, 51(01): 106-109.
[64] 王韵然, 罗廷纲, 夏志伟, 等. 硅橡胶老化性能的研究进展[J], 有机硅材料, 2011, 25(01): 58-61.
[65] 周超杰, 夏晨辉, 王刚, 等. 导热硅橡胶的老化性能研究[J], 合成材料老化与应用, 2022, 51(03): 33-35.
[66] FANG J Y, ZENG X L, WANG M, et al. Effects of Aging on Macro Performance and Multiscale Structure Change of Highly Filled Elastomer Composites for Chip Cooling Investigated by Broadband Dielectric Spectroscopy[J]. Acs Applied Polymer Materials, 2023, 6(1): 768-777.
[67] SCHMUDDE M, GRUNEWALD C, RISSE T, et al. Controlling the Interparticular Distances of Extended Non-Close-Packed Colloidal Monolayers[J]. Langmuir, 2020, 36(17): 4827-4834.
[68] ZHAO H, WEI X, FANG Y, et al. Molecular Dynamics Simulation of the Structural, Mechanical, and Reprocessing Properties of Vitrimers Based on a Dynamic Covalent Polymer Network[J]. Macromolecules, 2022, 55(4): 1091-1103.
[69] 李潇, 唐建国, 王瑶, 等. 纳米银线与Ag@SiO2的制备及表征[J] 山东化工, 2017, 46(08): 1-2+7.
[70] STAFIE N, STAMATIALIS D F, WESSLING M. Effect of PDMS cross-linking degree on the permeation performance of PAN/PDMS composite nanofiltration membranes[J]. Separation and Purification Technology, 2005, 45(3): 220-231.
修改评论