[1] RAJIC N. Principal component thermography for flaw contrast enhancement and flaw depth characterisation in composite structuresJ. Composite structures, 2002, 58(4): 521-528.
[2] LOWE M J S, ALLEYNE D N, CAWLEY P. Defect detection in pipes using guided waves[J]. Ultrasonics, 1998, 36(1-5): 147-154.
[3] ROSE J L. Ultrasonic guided waves in solid media[M]. Cambridge university press, 2014.
[4] PASTORELLI R, FERRARI A C, BEGHI M G, et al. Elastic constants of ultrathin diamond-like carbon films[J]. Diamond and Related Materials, 2000, 9(3-6): 825-830.
[5] KIM K Y, SRIBAR R, SACHSE W. Analytical and optimization procedures for determination of all elastic constants of anisotropic solids from group velocity data measured in symmetry planes[J]. Journal of applied physics, 1995, 77(11): 5589-5600.
[6] 付千发, 李萍, 谭家隆, 等. 应用超声声压透射系数谱反演薄板的弹性模量[J]. 测试技术学报, 2009, 23(2): 106-111.
[7] DOMARKAS V, KHURI‐YAKUB B T, KINO G S. Length and depth resonances of surface cracks and their use for crack size estimation[J]. Applied Physics Letters, 1978, 33(7): 557-559.
[8] ROKHLIN S I, XIE B, BALTAZAR A. Quantitative ultrasonic characterization of environmental degradation of adhesive bonds[J]. Journal of adhesion science and technology, 2004, 18(3): 327-359.
[9] DAHMEN S, GLORIEUX C. Optimization of coupled Lamb wave parameters for defect detection in anisotropic composite three-layer with Kelvin-Voigt viscoelasticity using Legendre polynomial method[J]. Composite Structures, 2021, 272: 114158.
[10] JI K, ZHAO P, ZHUO C, et al. Efficient phase shift migration for ultrasonic full-matrix imaging of multilayer composite structures[J]. Mechanical Systems and Signal Processing, 2022, 174: 109114.
[11] LANGENBERG K J, MARKLEIN R, MAYER K. Ultrasonic nondestructive testing of materials: theoretical foundations[M]. CRC Press, 2012.
[12] PARK B, AN Y K, SOHN H. Visualization of hidden delamination and debonding in composites through noncontact laser ultrasonic scanning[J]. Composites science and technology, 2014, 100: 10-18.
[13] CERNIGLIA D, SCAFIDI M, PANTANO A, et al. Inspection of additive-manufactured layered components[J]. Ultrasonics, 2015, 62: 292-298.
[14] ZHOU Z, ZHANG K, ZHOU J, et al. Application of laser ultrasonic technique for non-contact detection of structural surface-breaking cracks[J]. Optics & Laser Technology, 2015, 73: 173-178.
[15] DAVIS G, NAGARAJAH R, PALANISAMY S, et al. Laser ultrasonic inspection of additive manufactured components[J]. The International Journal of Advanced Manufacturing Technology, 2019, 102: 2571-2579.
[16] WORLTON D C. Ultrasonic testing with Lamb waves[R]. General Electric Co., Hanford Atomic Products Operation, Richland, Wash., 1956.
[17] ALLEYNE D N, CAWLEY P. Optimization of Lamb wave inspection techniques[J]. Ndt & E International, 1992, 25(1): 11-22.
[18] BEN B S, BEN B A, VIKRAM K A, et al. Damage identification in composite materials using ultrasonic based Lamb wave method[J]. Measurement, 2013, 46(2): 904-912.
[19] HONARVAR F, VARVANI-FARAHANI A. A review of ultrasonic testing applications in additive manufacturing: Defect evaluation, material characterization, and process control[J]. Ultrasonics, 2020, 108: 106227.
[20] NELSON K A, CASALEGNO R, MILLER R J D, et al. Laser‐induced excited state and ultrasonic wave gratings: Amplitude and phase grating contributions to diffraction[J]. The Journal of Chemical Physics, 1982, 77(3): 1144-1152.
[21] MATSUDA O, LARCIPRETE M C, VOTI R L, et al. Fundamentals of picosecond laser ultrasonics[J]. Ultrasonics, 2015, 56: 3-20.
[22] DRAIN L E. Laser ultrasonics techniques and applications[M]. Routledge, 2019.
[23] WHITE R M. Generation of elastic waves by transient surface heating[J]. Journal of Applied Physics, 1963, 34(12): 3559-3567.
[24] SCRUBY C B, DEWHURST R J, HUTCHINS D A, et al. Quantitative studies of thermally generated elastic waves in laser‐irradiated metals[J]. Journal of Applied Physics, 1980, 51(12): 6210-6216.
[25] ROSE L R F. Point‐source representation for laser‐generated ultrasound[J]. The Journal of the Acoustical Society of America, 1984, 75(3): 723-732.
[26] DOYLE P A. On epicentral waveforms for laser-generated ultrasound[J]. Journal of Physics D: Applied Physics, 1986, 19(9): 1613.
[27] SANDERSON T, UME C, JARZYNSKI J. Longitudinal wave generation in laser ultrasonics[J]. Ultrasonics, 1998, 35(8): 553-561.
[28] TIAGAI V A, SNITKO O V, POPOV V B, et al. Electrooptic modulators of laser radiation based on the Franz-Keldysh effect in semiconductors[J]. Kvantovaia Elektronika Moscow, 1976, 11: 89-100.
[29] LEDBETTER H M, MOULDER J C. Laser‐induced Rayleigh waves in aluminum[J]. The Journal of the Acoustical Society of America, 1979, 65(3): 840-842.
[30] MONCHALIN J P, AUSSEL J D. Ultrasonic velocity and attenuation determination by laser-ultrasonics[J]. Journal of nondestructive evaluation, 1990, 9: 211-221.
[31] TANAKA T, IZAWA Y. Nondestructive detection of small internal defects in carbon steel by laser ultrasonics[J]. Japanese Journal of Applied Physics, 2001, 40(3R): 1477.
[32] LÉVESQUE D, DUBOURG L, BLOUIN A. Laser ultrasonics for defect detection and residual stress measurement of friction stir welds[J]. Nondestructive Testing and Evaluation, 2011, 26(3-4): 319-333.
[33] BAILLIE I, GRIFFITH P, JIAN X, et al. Implementing an ultrasonic inspection system to find surface and internal defects in hot, moving steel using EMATs[J]. Insight-Non-Destructive Testing and Condition Monitoring, 2007, 49(2): 87-92.
[34] LV G, GUO S, CHEN D, et al. Laser ultrasonics and machine learning for automatic defect detection in metallic components[J]. NDT & E International, 2023, 133: 102752.
[35] SWORNOWSKI P J. Scanning of the internal structure part with laser ultrasonic in aviation industry[J]. Scanning, 2011, 33(5): 378-385.
[36] THELEN M, BOCHUD N, BRINKER M, et al. Laser-excited elastic guided waves reveal the complex mechanics of nanoporous silicon[J]. Nature communications, 2021, 12(1): 3597.
[37] KRAUTKRÄMER J, KRAUTKRÄMER H. Ultrasonic testing of materials[M]. Springer Science & Business Media, 2013.
[38] LAMB H. On waves in an elastic plate[J]. Proceedings of the Royal Society of London. Series A, Containing papers of a mathematical and physical character, 1917, 93(648): 114-128.
[39] LEONARD K R, MALYARENKO E V, HINDERS M K. Ultrasonic Lamb wave tomography[J]. Inverse problems, 2002, 18(6): 1795.
[40] WORLTON D C. Ultrasonic testing with Lamb waves[R]. General Electric Co., Hanford Atomic Products Operation, Richland, Wash., 1956.
[41] PRADA C, BALOGUN O, MURRAY T W. Laser-based ultrasonic generation and detection of zero-group velocity Lamb waves in thin plates[J]. Applied Physics Letters, 2005, 87(19).
[42] CLORENNEC D, PRADA C, ROYER D. Local and noncontact measurements of bulk acoustic wave velocities in thin isotropic plates and shells using zero group velocity Lamb modes[J]. Journal of applied physics, 2007, 101(3).
[43] MEZIL S, BRUNO F, RAETZ S, et al. Investigation of interfacial stiffnesses of a tri-layer using Zero-Group Velocity Lamb modes[J]. The Journal of the Acoustical Society of America, 2015, 138(5): 3202-3209.
[44] BALOGUN O, COLE G D, HUBER R, et al. High-spatial-resolution sub-surface imaging using a laser-based acoustic microscopy technique[J]. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2011, 58(1): 226-233.
[45] CÈS M, CLORENNEC D, ROYER D, et al. Thin layer thickness measurements by zero group velocity Lamb mode resonances[J]. Review of Scientific Instruments, 2011, 82(11).
[46] ALLEYNE D N, CAWLEY P. The interaction of Lamb waves with defects[J]. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 1992, 39(3): 381-397.
[47] TERRIEN N, OSMONT D, ROYER D, et al. A combined finite element and modal decomposition method to study the interaction of Lamb modes with micro-defects[J]. Ultrasonics, 2007, 46(1): 74-88.
[48] GRÜNSTEIDL C, BERER T, Hettich M, et al. Determination of thickness and bulk sound velocities of isotropic plates using zero-group-velocity Lamb waves[J]. Applied Physics Letters, 2018, 112(25).
[49] CÈS M, ROYER D, PRADA C. Characterization of mechanical properties of a hollow cylinder with zero group velocity Lamb modes[J]. The Journal of the Acoustical Society of America, 2012, 132(1): 180-185.
[50] DAHMEN S. Influence of volumic fraction of adhesive in elastic and viscous thin bonded Aluminum/Adhesive/Aluminum plate on Lamb modes that have ZGV modes[J]. Ultrasonics, 2019, 94: 37-49.
[51] AHN P, BALOGUN O. Elastic characterization of nanoporous gold foams using laser based ultrasonics[J]. Ultrasonics, 2014, 54(3): 795-800.
[52] WATZL G, GRÜNSTEIDL C, ARNOLDT A, et al. In situ laser-ultrasonic monitoring of elastic parameters during natural aging in an Al-Zn-Mg-Cu alloy (AA7075) sheet[J]. Materialia, 2022, 26: 101600.
[53] WATZL G, KERSCHBAUMMAYR C, SCHAGERL M, et al. In situ laser-ultrasonic monitoring of Poisson’s ratio and bulk sound velocities of steel plates during thermal processes[J]. Acta Materialia, 2022, 235: 118097.
[54] 郑海超, 朱新杰, 高广健, 等. 焊接薄板中 S_0 Lamb波对槽型缺陷响应特性的数值研究[J]. 应用声学, 2018, 37(1): 136-144.
[55] 高云鹏, 樊平成, 廖林, 等. 基于零群速Lamb波的不等厚对接焊缝缺陷检测[J]. 压电与声光, 2022, 44: 1.
[56] 原帅, 赵晓春, 廖林, 等. 基于超声高阶Lamb波的薄板应力测量技术研究[J]. 压电与声光, 2022, 44(1): 144-150.
[57] PAN L, SHEN Z, KAN W, et al. Determination of each layer thickness of thin bilayer using laser-based multiple zero-group velocity Lamb waves[J]. Optics & Laser Technology, 2023, 165: 109580.
[58] BYCHKOV A, SIMONOVA V, ZARUBIN V, et al. The progress in photoacoustic and laser ultrasonic tomographic imaging for biomedicine and industry: A review[J]. Applied Sciences, 2018, 8(10): 1931.
[59] HUANG R, NIE X, ZHOU J. Laser Doppler velocimeter and its calibration system[J]. Measurement, 2019, 134: 286-292.
[60] GEORGE W K, LUMLEY J L. The laser-Doppler velocimeter and its application to the measurement of turbulence[J]. Journal of Fluid Mechanics, 1973, 60(2): 321-362.
[61] BEN B S, BEN B A, VIKRAM K A, et al. Damage identification in composite materials using ultrasonic based Lamb wave method[J]. Measurement, 2013, 46(2): 904-912.
[62] SILK M G, BAINTON K F. The propagation in metal tubing of ultrasonic wave modes equivalent to Lamb waves[J]. Ultrasonics, 1979, 17(1): 11-19.
[63] RÖMMELER A, ZOLLIKER P, NEUENSCHWANDER J, et al. Air coupled ultrasonic inspection with Lamb waves in plates showing mode conversion[J]. Ultrasonics, 2020, 100: 105984.
[64] GORGIN R, LUO Y, WU Z. Environmental and operational conditions effects on Lamb wave based structural health monitoring systems: A review[J]. Ultrasonics, 2020, 105: 106114.
[65] PRADA C, CLORENNEC D, ROYER D. Local vibration of an elastic plate and zero-group velocity Lamb modes[J]. The Journal of the Acoustical Society of America, 2008, 124(1): 203-212.
[66] BALOGUN O, MURRAY T W, PRADA C. Simulation and measurement of the optical excitation of the S1 zero group velocity Lamb wave resonance in plates[J]. Journal of Applied Physics, 2007, 102(6).
[67] SHUVALOV A L, PONCELET O. On the backward Lamb waves near thickness resonances in anisotropic plates[J]. International Journal of Solids and Structures, 2008, 45(11-12): 3430-3448.
[68] DUBEY A K, YADAVA V. Laser beam machining—A review[J]. International Journal of Machine Tools and Manufacture, 2008, 48(6): 609-628.
[69] CHO H, YAGUCHI Y, ITO H. Characterization of the bond quality of adhesive plates utilizing zero-group-velocity Lamb waves measured by a laser ultrasonics technique[J]. Mechanical Engineering Journal, 2015, 2(1): 14-00335-14-00335.
[70] HAKODA C, ROSE J, Shokouhi P, et al. Using Floquet periodicity to easily calculate dispersion curves and wave structures of homogeneous waveguides[C]//AIP Conference Proceedings. AIP Publishing, 2018, 1949(1).
[71] HU S, SHI W, LU C, et al. Rapid detection of cracks in the rail foot by ultrasonic B-scan imaging using a shear horizontal guided wave electromagnetic acoustic transducer[J]. Ndt & E International, 2021, 120: 102437.
[72] LI C, JIANG T, LIU S, et al. Dispersion and band gaps of elastic guided waves in the multi-scale periodic composite plates[J]. Aerospace Science and Technology, 2022, 124: 107513.
[73] WEN Y, CHEN C, YE Y, et al. Advances on thermally conductive epoxy‐based composites as electronic packaging underfill materials—a review[J]. Advanced Materials, 2022, 34(52): 2201023.
[74] KHAN J, MOMIN S A, Mariatti M. A review on advanced carbon-based thermal interface materials for electronic devices[J]. Carbon, 2020, 168: 65-112.
[75] AN Y K, PARK B, SOHN H. Complete noncontact laser ultrasonic imaging for automated crack visualization in a plate[J]. Smart Materials and Structures, 2013, 22(2): 025022.
[76] LE JEUNE L, ROBERT S, DUMAS P, et al. Adaptive ultrasonic imaging with the total focusing method for inspection of complex components immersed in water[C]//AIP Conference proceedings. American Institute of Physics, 2015, 1650(1): 1037-1046
[77] SCHWARTING R K W. Behavioral analysis in laboratory rats: challenges and usefulness of 50-kHz ultrasonic vocalizations[J]. Neuroscience & Biobehavioral Reviews, 2023: 105260.
[78] LI J, KHODAEI Z S, ALIABADI M H. Boundary element modelling of ultrasonic Lamb waves for structural health monitoring[J]. Smart Materials and Structures, 2020, 29(10): 105030.
[79] MEHRABI M, SOORGEE M H, HABIBI H, et al. A novel application of ultrasonic Lamb waves: Studying adhesive effects on the inspection of coating debonding in a three-layer waveguide[J]. Nondestructive Testing and Evaluation, 2021, 36(6): 616-636.
[80] WEILAND J, HESSER D F, XIONG W, et al. Structural health monitoring of an adhesively bonded CFRP aircraft fuselage by ultrasonic Lamb Waves[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2020, 234(13): 2000-2010.
[81] QIU Z, LU Y, QIU Z. Review of ultrasonic ranging methods and their current challenges[J]. Micromachines, 2022, 13(4): 520.
修改评论