[1] CAI Y, YU H, CHEN C, et al. Improved thermal conductivities of vertically aligned carbon nanotube arrays using three-dimensional carbon nanotube networks [J]. Carbon, 2022, 196: 902-12.
[2] MA T, ZHAO Y, RUAN K, et al. Highly thermal conductivities, excellent mechanical robustness and flexibility, and outstanding thermal stabilities of aramid nanofiber composite papers with nacre-mimetic layered structures [J]. ACS Applied Materials & Interfaces, 2019, 12(1): 1677-86.
[3] RUAN K, GUO Y, GU J. Liquid crystalline polyimide films with high intrinsic thermal conductivities and robust toughness [J]. Macromolecules, 2021, 54(10): 4934-44.
[4] LI M, SUN Y, FENG D, et al. Thermally conductive polyvinyl alcohol composite films via introducing hetero-structured MXene@ silver fillers [J]. Nano Research, 2023, 16(5): 7820-8.
[5] YU Z, DAI T, YUAN S, et al. Electromagnetic interference shielding performance of anisotropic polyimide/graphene composite aerogels [J]. ACS applied materials & interfaces, 2020, 12(27): 30990-1001.
[6] LI S, TANG X, ZHANG Y, et al. Corrosion-resistant graphene-based magnetic composite foams for efficient electromagnetic absorption [J]. ACS Applied Materials & Interfaces, 2022, 14(6): 8297-310.
[7] MA Z, KANG S, MA J, et al. Ultraflexible and mechanically strong double-layered aramid nanofiber–Ti3C2T x mxene/silver nanowire nanocomposite papers for highperformance electromagnetic interference shielding [J]. Acs Nano, 2020, 14(7): 8368-82.
[8] YE Z, WANG K, LI X, et al. Preparation and characterization of ferrite/carbon aerogel composites for electromagnetic wave absorbing materials [J]. Journal of Alloys and Compounds, 2022, 893: 162396.
[9] MA Z, XIANG X, SHAO L, et al. Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing [J]. Angewandte Chemie International Edition, 2022, 61(15): e202200705.
[10] JIA L-C, ZHANG G, XU L, et al. Robustly superhydrophobic conductive textile for efficient electromagnetic interference shielding [J]. ACS applied materials & interfaces, 2018, 11(1): 1680-8.
[11] ZHANG Y, RUAN K, GUO Y, et al. Recent advances of MXenes‐based optical functional materials [J]. Advanced Photonics Research, 2023, 4(12): 2300224.
[12] HUANG X, YU G, ZHANG Y, et al. Design of cellular structure of graphene aerogels for electromagnetic wave absorption [J]. Chemical Engineering Journal, 2021, 426: 131894.
[13] LI L, LI M, ZHANG Z, et al. Robust composite film with high thermal conductivity and excellent mechanical properties by constructing a long-range ordered sandwich structure [J]. Journal of Materials Chemistry A, 2022, 10(18): 9922-31.
[14] ZHANG R-H, SHI X-T, TANG L, et al. Thermally conductive and insulating epoxy composites by synchronously incorporating Si-sol functionalized glass fibers and boron nitride fillers [J]. Chinese Journal of Polymer Science, 2020, 38: 730-9.
[15] ZHANG Y, RUAN K, ZHOU K, et al. Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding [J]. Advanced Materials, 2023, 35(16): 2211642.
[16] ZHANG Y, HEO Y-J, SON Y-R, et al. Recent advanced thermal interfacial materials: A review of conducting mechanisms and parameters of carbon materials [J]. Carbon, 2019, 142: 445-60.
[17] HO C Y, POWELL R W, LILEY P E. Thermal conductivity of the elements [J]. Journal of Physical and Chemical Reference Data, 1972, 1(2): 279-421.
[18] BALANDIN A A. Phononics of graphene and related materials [J]. ACS nano, 2020, 14(5): 5170-8.
[19] YU H, GUO P, QIN M, et al. Highly thermally conductive polymer composite enhanced by two-level adjustable boron nitride network with leaf venation structure [J]. Composites Science and Technology, 2022, 222: 109406.
[20] ZHANG F, FENG Y, QIN M, et al. Stress controllability in thermal and electrical conductivity of 3D elastic graphene ‐ crosslinked carbon nanotube sponge/polyimide nanocomposite [J]. Advanced Functional Materials, 2019, 29(25):1901383.
[21] LV F, QIN M, ZHANG F, et al. High cross-plane thermally conductive hierarchical composite using graphene-coated vertically aligned carbon nanotubes/graphite [J]. Carbon, 2019, 149: 281-9.
[22] MORTAZAVI B, BANIASSADI M, BARDON J, et al. Modeling of two-phase random composite materials by finite element, Mori–Tanaka and strong contrast methods [J]. Composites Part B: Engineering, 2013, 45(1): 1117-25.
[23] XU X, CHEN J, ZHOU J, et al. Thermal conductivity of polymers and their nanocomposites [J]. Advanced Materials, 2018, 30(17): 1705544.
[24] GUO Y, RUAN K, SHI X, et al. Factors affecting thermal conductivities of the polymers and polymer composites: A review [J]. Composites Science and Technology, 2020, 193: 108134.
[25] QIN M, XU Y, CAO R, et al. Efficiently controlling the 3D thermal conductivity of a polymer nanocomposite via a hyperelastic double ‐ continuous network of graphene and sponge [J]. Advanced functional materials, 2018, 28(45): 1805053.
[26] GU J, XU S, ZHUANG Q, et al. Hyperbranched polyborosilazane and boron nitride modified cyanate ester composite with low dielectric loss and desirable thermal conductivity [J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(2): 784-90.
[27] YANG X, LIANG C, MA T, et al. A review on thermally conductive polymeric composites: classification, measurement, model and equations, mechanism and fabrication methods [J]. Advanced composites and hybrid materials, 2018, 1: 207-30.
[28] WANG S, FENG D, GUAN H, et al. Highly efficient thermal conductivity of polydimethylsiloxane composites via introducing “Line-Plane”-like heterostructured fillers [J]. Composites Part A: Applied Science and Manufacturing, 2022, 157: 106911.
[29] LV P, TAN X-W, YU K-H, et al. Super-elastic graphene/carbon nanotube aerogel: A novel thermal interface material with highly thermal transport properties [J]. Carbon, 2016, 99: 222-8.
[30] QIN M, FENG Y, JI T, et al. Enhancement of cross-plane thermal conductivity and mechanical strength via vertical aligned carbon nanotube@ graphite architecture [J]. Carbon, 2016, 104: 157-68.
[31] ZENG X, NIE T, ZHAO C, et al. Coupling between the 2D “ligand” and 2D “host” and their assembled hierarchical heterostructures for electromagnetic wave absorption [J]. ACS Applied Materials & Interfaces, 2022, 14(36): 41235-45.
[32] HE X, PENG H, XIONG Z, et al. A sustainable and low-cost route to prepare magnetic particle-embedded ultra-thin carbon nanosheets with broadband microwave absorption from biowastes [J]. Carbon, 2022, 198: 195-206.
[33] LIANG C, HE J, ZHANG Y, et al. MOF-derived CoNi@ C-silver nanowires/cellulose nanofiber composite papers with excellent thermal management capability for outstanding electromagnetic interference shielding [J]. Composites Science and Technology, 2022, 224: 109445.
[34] XU J, SHU R, WAN Z, et al. Construction of three-dimensional hierarchical porous nitrogen-doped reduced graphene oxide/hollow cobalt ferrite composite aerogels toward highly efficient electromagnetic wave absorption [J]. Journal of Materials Science & Technology, 2023, 132: 193-200.
[35] WANG S, GONG H, ASHFAQ M Z, et al. Introducing MWCNTs conductive network in polymer-derived SiCN ceramics for broadband electromagnetic wave absorption [J]. Ceramics International, 2022, 48(16): 23989-4002.
[36] REN S, YU H, WANG L, et al. State of the art and prospects in metal-organic framework-derived microwave absorption materials [J]. Nano-Micro Letters, 2022, 14(1): 68.
[37] WU Y, CHEN L, HAN Y, et al. Hierarchical construction of CNT networks in aramid papers for high-efficiency microwave absorption [J]. Nano Research, 2023, 16(5): 7801-9.
[38] ZHANG M, CAO M-S, SHU J-C, et al. Electromagnetic absorber converting radiation for multifunction [J]. Materials Science and Engineering: R: Reports, 2021, 145: 100627.
[39] WANG L, MA Z, QIU H, et al. Significantly enhanced electromagnetic interference shielding performances of epoxy nanocomposites with long-range aligned lamellar structures [J]. Nano-Micro Letters, 2022, 14(1): 224.
[40] WEN B, YANG G, ZHOU X, et al. Intelligent diffusion regulation induced in-situ growth of cobalt nanoclusters on carbon nanotubes for excellent electromagnetic wave absorption [J]. Journal of Colloid and Interface Science, 2023, 634: 74-85.
[41] HE J, HAN M, WEN K, et al. Absorption-dominated electromagnetic interference shielding assembled composites based on modular design with infrared camouflage and response switching [J]. Composites Science and Technology, 2023, 231: 109799.
[42] WANG C, LIU Y, JIA Z, et al. Multicomponent nanoparticles synergistic onedimensional nanofibers as heterostructure absorbers for tunable and efficient microwave absorption [J]. Nano-Micro Letters, 2023, 15(1): 13.
[43] JIANG T, WANG Z, LUO Z, et al. Constructing heterogeneous conductive network with core-shell Ag@ Fe3O4 for dual-band effective microwave absorption [J]. Applied Surface Science, 2023, 610: 155231.
[44] QIU J, XIN Z, ZHANG M, et al. Facile synthesis of yolk-shell pompon-like Fe@ void@ CeO2@ Ni nanospheres with enhanced microwave absorption properties [J]. Applied Surface Science, 2023, 613: 155873.
[45] ZHOU J, JIA Z, ZHANG Y, et al. Construction of 3D conductive network by flowerlike V2O3 synergy with magnetic NiCo for superior electromagnetic wave absorption performance [J]. Materials Today Physics, 2022, 29: 100902.
[46] LIANG H, XING H, QIN M, et al. Bamboo-like short carbon fibers@ Fe3O4@ phenolic resin and honeycomb-like short carbon fibers@ Fe3O4@ FeO composites as high-performance electromagnetic wave absorbing materials [J]. Composites Part A: Applied Science and Manufacturing, 2020, 135: 105959.
[47] HUANG M, WANG L, LI X, et al. Magnetic interacted interaction effect in MXene skeleton: enhanced thermal‐generation for electromagnetic interference shielding [J]. Small, 2022, 18(27): 2201587.
[48] CHAKRABORTY T, SHARMA S, DEBNATH T, et al. Fabrication of heterostructure composites of Ni-Zn-Cu-Ferrite-C3N4-Poly (vinylidene fluoride) films for the enhancement of electromagnetic interference shielding effectiveness [J]. Chemical Engineering Journal, 2021, 420: 127683.
[49] JIANG Q, QIAO Y, UDDIN A, et al. Tailoring electromagnetic response of threedimensional waffle-like metacomposite based on arrangement angle of ferromagnetic microwires [J]. Composites Part B: Engineering, 2022, 247: 110298.
[50] ZHANG Y, YU Y, YUAN Y, et al. Reduced graphene oxide-wrapped Fe–Fe 3 O 4@ mSiO 2 hollow core–shell composites with enhanced electromagnetic wave absorption properties [J]. Journal of Materials Chemistry C, 2022, 10(41): 15620-8.
[51] GAO J, MA Z, LIU F, et al. Synthesis of carbon-coated cobalt ferrite core–shell structure composite: A method for enhancing electromagnetic wave absorption properties by adjusting impedance matching [J]. Chinese Journal of Chemical Engineering, 2022, 47: 206-17.HOU X, CHEN Y, DAI W, et al. Highly thermal conductive polymer composites via constructing micro-phragmites communis structured carbon fibers [J]. Chemical Engineering Journal, 2019, 375: 121921.
[52] REN L, WANG Y, JIA Z, et al. Controlling the heterogeneous interfaces of Fe3O4/N-doped porous carbon via facile swelling for enhancing the electromagnetic wave absorption [J]. Composites Communications, 2022, 29: 101052.
[53] ZHENG-WEI C, GGUAN-MING Y, ZHI-JUN D. Research progress on carbon materials with high-oriented thermal conductivity [J]. Materials China, 2020, 39(6): 450-7.
[54] ZHAO J, GU Z, ZHANG Q. Stacking MoS2 flower-like microspheres on pomelo peels-derived porous carbon nanosheets for high-efficient X-band electromagnetic wave absorption [J]. Nano Research, 2023: 1-9.
[55] LOU Z, WANG Q, KARA U I, et al. Biomass-derived carbon heterostructures enable environmentally adaptive wideband electromagnetic wave absorbers [J]. Nanomicro letters, 2022, 14: 1-16.
[56] CHENG Z, WANG R, CAO Y, et al. Intelligent off/on switchable microwave absorption performance of reduced graphene oxide/VO2 composite aerogel [J]. Advanced Functional Materials, 2022, 32(40): 2205160.
[57] YIN W, QIN M, YU H, et al. Hyperelastic graphene aerogels reinforced by in-suit welding polyimide nano fiber with leaf skeleton structure and adjustable thermal conductivity for morphology and temperature sensing [J]. Advanced Fiber Materials, 2023, 5(3): 1037-49.
[58] WANG Y-Y, SUN W-J, YAN D-X, et al. Ultralight carbon nanotube/graphene/polyimide foam with heterogeneous interfaces for efficient electromagnetic interference shielding and electromagnetic wave absorption [J]. Carbon, 2021, 176: 118-25.
[59] SHENG A, YANG Y, YAN D-X, et al. Self-assembled reduced graphene oxide/nickel nanofibers with hierarchical core-shell structure for enhanced electromagnetic wave absorption [J]. Carbon, 2020, 167: 530-40.
[60] WANG Q, HAN X, SOMMERS A, et al. A review on application of carbonaceous materials and carbon matrix composites for heat exchangers and heat sinks [J]. International Journal of refrigeration, 2012, 35(1): 7-26.
[61] HOU X, CHEN Y, DAI W, et al. Highly thermal conductive polymer composites via constructing micro-phragmites communis structured carbon fibers [J]. Chemical Engineering Journal, 2019, 375: 121921.
[62] WU Q, LI W, LIU C, et al. Carbon fiber reinforced elastomeric thermal interface materials for spacecraft [J]. Carbon, 2022, 187: 432-8
[63] UETANI K, ATA S, TOMONOH S, et al. Elastomeric thermal interface materials with high through-plane thermal conductivity from carbon fiber fillers vertically aligned by electrostatic flocking [J]. Advanced Materials (Deerfield Beach, Fla), 2014, 26(33): 5857-62.
[64] MA J, SHANG T, REN L, et al. Through-plane assembly of carbon fibers into 3D skeleton achieving enhanced thermal conductivity of a thermal interface material [J]. Chemical Engineering Journal, 2020, 380: 122550.
[65] LI J, YE Z, MO P, et al. Compliance-tunable thermal interface materials based on vertically oriented carbon fiber arrays for high-performance thermal management [J]. Composites Science and Technology, 2023, 234.
[66] CHUNG D. Performance of thermal interface materials [J]. Small, 2022, 18(16): 2200693.
[67] ZHOU Y, CHEN L, JIAN M, et al. Recent research progress of ferrite multielement microwave absorbing composites [J]. Advanced Engineering Materials, 2022, 24(12): 2200526.
[68] XIE X, WANG B, WANG Y, et al. Spinel structured MFe2O4 (M= Fe, Co, Ni, Mn, Zn) and their composites for microwave absorption: A review [J]. Chemical Engineering Journal, 2022, 428: 131160.
[69] WANG B, WU Q, FU Y, et al. A review on carbon/magnetic metal composites for microwave absorption [J]. Journal of materials science & technology, 2021, 86: 91-109.
[70] LI T, ZHI D-D, GUO Z-H, et al. 3D porous biomass-derived carbon materials: biomass sources, controllable transformation and microwave absorption application [J]. Green Chemistry, 2022, 24(2): 647-74.
[71] SUN H, CHE R, YOU X, et al. Cross‐stacking aligned carbon‐nanotube films to tune microwave absorption frequencies and increase absorption intensities [J]. Advanced materials, 2014, 26(48): 8120-5.
[72] ZHENG J, WEI X, LI Y, et al. Stretchable polyurethane composite foam triboelectric nanogenerator with tunable microwave absorption properties at elevated temperature [J]. Nano Energy, 2021, 89: 106397.
[73] FANG Y, XUE W, ZHAO R, et al. Effect of nanoporosity on the electromagnetic wave absorption performance in a biomass-templated Fe 3 O 4/C composite: a small-angle neutron scattering study [J]. Journal of Materials Chemistry C, 2020, 8(1): 319-27.
[74] LI J, LU W, SUHR J, et al. Superb electromagnetic wave-absorbing composites based on large-scale graphene and carbon nanotube films [J]. Scientific reports, 2017, 7(1): 2349.
[75] JIANG S, QIAN K, YU K, et al. Controllable synthesis and microwave absorption properties of Fe3O4@ f-GNPs nanocomposites [J]. Composites Communications, 2020, 20: 100363.
[76] ZENG X, ZHU L, YANG B, et al. Necklace-like Fe3O4 nanoparticle beads on carbon nanotube threads for microwave absorption and supercapacitors [J]. Materials & Design, 2020, 189: 108517.
[77] BANDARU S, MURTHY N, KULKARNI R, et al. Magnetic ferrite/carbonized cotton fiber composites for improving electromagnetic absorption properties at gigahertz frequencies [J]. Journal of Materials Science & Technology, 2021, 86: 127-38.
[78] SHU X, FANG B, WU W, et al. Acicular or octahedral Fe3O4/rice husk-based activated carbon composites through graphitization synthesis as superior electromagnetic wave absorbers [J]. Composites Part A: Applied Science and Manufacturing, 2021, 151: 106635.
[79] WU Z, CHENG H W, JIN C, et al. Dimensional design and core–shell engineering of nanomaterials for electromagnetic wave absorption [J]. Advanced Materials, 2022, 34(11): 2107538.
[80] MU Y, MA Z-H, LIANG H-S, et al. Ferrite-based composites and morphologycontrolled absorbers [J]. Rare Metals, 2022, 41(9): 2943-70.
[81] LI Z, LI X, ZONG Y, et al. Solvothermal synthesis of nitrogen-doped graphene decorated by superparamagnetic Fe3O4 nanoparticles and their applications as enhanced synergistic microwave absorbers [J]. Carbon, 2017, 115: 493-502.
[82] GUO L, AN Q-D, XIAO Z-Y, et al. Inherent N-doped honeycomb-like carbon/Fe3O4 composites with versatility for efficient microwave absorption and wastewater treatment [J]. ACS sustainable chemistry & engineering, 2019, 7(10): 9237-48.
[83] MENG X, LEI W, YANG W, et al. Fe3O4 nanoparticles coated with ultra-thin carbon layer for polarization-controlled microwave absorption performance [J]. Journal of colloid and interface science, 2021, 600: 382-9.
[84] SU Z, ZHANG W, LU J, et al. Oxygen-vacancy-rich Fe 3 O 4/carbon nanosheets enabling high-attenuation and broadband microwave absorption through the integration of interfacial polarization and charge-separation polarization [J]. Journal of Materials Chemistry A, 2022, 10(15): 8479-90.
[85] SUN Q, SUN L, CAI Y, et al. Activated carbon fiber/Fe 3 O 4 composite with enhanced electromagnetic wave absorption properties [J]. RSC advances, 2018, 8(61): 35337-42.
[86] QUAN B, LIANG X, YI H, et al. Constructing hierarchical porous nanospheres for versatile microwave response approaches: the effect of architectural design [J]. Dalton Transactions, 2017, 46(41): 14264-9.
[87] ZHAO X, HUANG Y, LIU X, et al. Magnetic nanorods/carbon fibers heterostructures coated with flower-like MoS2 layers for superior microwave absorption [J]. Carbon, 2023, 213.
[88] LIU X, ZHANG S, YU M, et al. WS2 nanosheets anchored on N-doped carbon fibers for superior electromagnetic wave absorption [J]. Chemical Engineering Journal, 2023, 465.
[89] ZIVKOVIC I, MURK A. Boron nitride loading for thermal conductivity improvement of composite microwave absorbers [J]. Electronics letters, 2012, 48(18): 1130-1.
[90] SINGH S K, AKHTAR M, KAR K K. Impact of Al2O3, TiO2, ZnO and BaTiO3 on the microwave absorption properties of exfoliated graphite/epoxy composites at Xband frequencies [J]. Composites Part B: Engineering, 2019, 167: 135-46.
[91] ZHAO J, ZHANG J, WANG L, et al. Fabrication and investigation on ternary heterogeneous MWCNT@ TiO2-C fillers and their silicone rubber wave-absorbing composites [J]. Composites Part A: Applied Science and Manufacturing, 2020, 129: 105714.
[92] ZHANG Y, LI S, TANG X, et al. Ultralight and ordered lamellar polyimide-based graphene foams with efficient broadband electromagnetic absorption [J]. Journal of Materials Science & Technology, 2022, 102: 97-104.
[93] LIU X, LI Y, SUN X, et al. Off/on switchable smart electromagnetic interference shielding aerogel [J]. Matter, 2021, 4(5): 1735-47.
[94] MOU P, ZHAO J, WANG G, et al. BCN nanosheets derived from coconut shells with outstanding microwave absorption and thermal conductive properties [J]. Chemical Engineering Journal, 2022, 437: 135285.
[95] WANG H, BI H, LIANG D, et al. Absorption-dominated electromagnetic shielding and excellent thermal conduction properties of poly (vinylidene fluoride)/SnBi58/Co-C composites with layered structure [J]. Journal of Alloys and Compounds, 2022, 921: 165998.
[96] GHOSH S K, DAS T K, GANGULY S, et al. Carbon nanotubes and carbon nanofibers based co-continuous thermoplastic elastomeric blend composites for efficient microwave shielding and thermal management [J]. Composites Part A: Applied Science and Manufacturing, 2022, 161: 107118.
[97] QIAN Y, TAO Y, LI W, et al. High electromagnetic wave absorption and thermal management performance in 3D CNF@ C-Ni/epoxy resin composites [J]. Chemical Engineering Journal, 2021, 425: 131608.
[98] JIAO Z, HUYAN W, YANG F, et al. Achieving ultra-wideband and elevated temperature electromagnetic wave absorption via constructing lightweight porousrigid structure [J]. Nano-Micro Letters, 2022, 14(1): 173.
[99] ZHOU M, WAN G, MOU P, et al. CNT@ NiO/natural rubber with excellent impedance matching and low interfacial thermal resistance toward flexible and heatconducting microwave absorption applications [J]. Journal of Materials Chemistry C, 2021, 9(3): 869-80.
[100] PAN Y, YANG B, JIA N, et al. Enhanced thermally conductive and microwave absorbing properties of polymethyl methacrylate/Ni@ GNP nanocomposites [J]. Industrial & Engineering Chemistry Research, 2021, 60(33): 12316-27.
[101] LIU H, FU R, SU X, et al. SCF-NiFe 2 O 4/epoxy composites with high thermal conductivity and electromagnetic interference resistance [J]. Journal of Materials Science: Materials in Electronics, 2020, 31: 21325-34.
[102] REN K, QIN H, LIU H, et al. Manipulating interfacial thermal conduction of 2D janus heterostructure via a thermo‐mechanical coupling [J]. Advanced Functional Materials, 2022, 32(18): 2110846.
[103] BAI Y, YANG H, HE L, et al. Construction of core-shell BN-OH@ Fe3O4@ PAn nanocomposite with ultra-wide microwave absorption and efficiency thermal management [J]. Journal of Alloys and Compounds, 2023, 936: 168174.
[104] BAI Y, HE L, LV P, et al. Impedance-matched (hydroxylated nano-BN/reduced graphene oxide)@ Fe3O4/polyaniline composite for efficient microwave absorption and thermal management [J]. Materials Chemistry and Physics, 2023, 295: 127193.
[105] ZHANG Z, WANG J, SHANG J, et al. A Through-Thickness Arrayed Carbon Fibers Elastomer with Horizontal Segregated Magnetic Network for Highly Efficient Thermal Management and Electromagnetic Wave Absorption [J]. Small, 2023, 19(4): e2205716.
[106] YANG X, FU K, WU L, et al. Synergistic enhancement of thermal conduction and microwave absorption of silica films based on graphene/chiral PPy/Al2O3 ternary aerogels [J]. Carbon, 2022, 199: 1-12.
[107] XING L, CHEN Y, YANG Y, et al. Incorporation of FexOy nanoparticles into 3D interlinked porous carbon nanofiber networks to synergistically enhance the electrical insulation, electromagnetic wave absorbing/shielding performance and thermal conductivity [J]. Chemical Engineering Journal, 2023, 469.
[108] WU G, JIA Z, ZHOU X, et al. Interlayer controllable of hierarchical MWCNTs@ C@ FexOy cross-linked composite with wideband electromagnetic absorption performance [J]. Composites Part A: Applied Science and Manufacturing, 2020, 128: 105687.
[109] SLEDZINSKA M, QUEY R, MORTAZAVI B, et al. Record low thermal conductivity of polycrystalline MoS2 films: tuning the thermal conductivity by grain orientation [J]. ACS applied materials & interfaces, 2017, 9(43): 37905-11.
[110] RUAN K, GU J. Ordered alignment of liquid crystalline graphene fluoride forsignificantly enhancing thermal conductivities of liquid crystalline polyimide composite films [J]. Macromolecules, 2022, 55(10): 4134-45.
[111] RUAN K, ZHONG X, SHI X, et al. Liquid crystal epoxy resins with high intrinsic thermal conductivities and their composites: A mini-review [J]. Materials Today Physics, 2021, 20: 100456.
[112] GUO Y, RUAN K, WANG G, et al. Advances and mechanisms in polymer composites toward thermal conduction and electromagnetic wave absorption [J]. Sci Bull (Beijing), 2023, 68(11): 1195-212.
[113] HU Y, DU G, CHEN N. A novel approach for Al 2 O 3 /epoxy composites with high strength and thermal conductivity [J]. Composites Science and Technology, 2016, 124: 36-43.
[114] LIU F, LI Y, HAO S, et al. Well-aligned MXene/chitosan films with humidity response for high-performance electromagnetic interference shielding [J]. Carbohydr Polym, 2020, 243: 116467.
[115] TAN X, YUAN Q, QIU M, et al. Rational design of graphene/polymer composites with excellent electromagnetic interference shielding effectiveness and high thermal conductivity: a mini review [J]. Journal of Materials Science & Technology, 2022, 117: 238-50.
[116] HAN J, DU G, GAO W, et al. An Anisotropically High Thermal Conductive Boron Nitride/Epoxy Composite Based on Nacre‐Mimetic 3D Network [J]. Advanced Functional Materials, 2019, 29(13).
[117] MA J, SHANG T, REN L, et al. Through-plane assembly of carbon fibers into 3D skeleton achieving enhanced thermal conductivity of a thermal interface material [J]. Chemical Engineering Journal, 2020, 380.
[118] LIN Y, KANG Q, LIU Y, et al. Flexible, Highly Thermally Conductive and Electrically Insulating Phase Change Materials for Advanced Thermal Management of 5G Base Stations and Thermoelectric Generators [J]. Nanomicro Lett, 2023, 15(1): 31.
[119] LIANG L, GU W, WU Y, et al. Heterointerface Engineering in Electromagnetic Absorbers: New Insights and Opportunities [J]. Adv Mater, 2022, 34(4): e2106195.
[120] LV H, GUO Y, ZHAO Y, et al. Achieving tunable electromagnetic absorber via graphene/carbon sphere composites [J]. Carbon, 2016, 110: 130-7.
[121] KAGAWA Y, MATSUMURA K, IBA H, et al. Potential of short Si–Ti–C–O fiberreinforced epoxy matrix composite as electromagnetic wave absorbing material [J]. Journal of materials science, 2007, 42: 1116-21.
[122] GUO C, ITOH K, SUN D, et al. Carbon nanotube/polysiloxane foams with tunable absorption bands for electromagnetic wave shielding [J]. ACS Applied Nano Materials, 2020, 3(6): 5944-54.
[123] SUN M-X, CAO W-Q, ZHU P-Y, et al. Thermally tailoring magnetic molecular sponges through self-propagating combustion to tune magnetic-dielectric synergy toward high-efficiency microwave absorption and attenuation [J]. Advanced Composites and Hybrid Materials, 2023, 6(1): 54.
[124] HUANG W, QIU Q, YANG X, et al. Ultrahigh density of atomic CoFe-electron synergy in noncontinuous carbon matrix for highly efficient magnetic wave adsorption [J]. Nano-Micro Letters, 2022, 14(1): 96.
[125] HUANG W, GAO W, ZUO S, et al. Hollow MoC/NC sphere for electromagnetic wave attenuation: direct observation of interfacial polarization on nanoscale heterointerfaces [J]. Journal of Materials Chemistry A, 2022, 10(3): 1290-8.
[126] WEI H, YANG S, FENG P, et al. Optimization of Ti with modified SiC ceramics for electromagnetic absorption properties [J]. Materials Characterization, 2023, 198: 112761.
[127] ZHOU Z, LAN D, REN J, et al. Controllable heterogeneous interfaces and dielectric modulation of biomass-derived nanosheet metal-sulfide complexes for highperformance electromagnetic wave absorption [J]. Journal of Materials Science & Technology, 2024, 185: 165-73.
[128] ZHU Y, LI X, CHEN P, et al. Ru doped magnetic nanoparticles embedded in mesoporous silica for effective microwave absorption by interface engineering and DFT calculations [J]. Microporous and Mesoporous Materials, 2022, 333: 111763.
修改评论