中文版 | English
题名

高效导热吸波碳基复合材料的制备及性能研究

其他题名
STUDY ON FABRICATION AND PERFORMANCES OF CARBON-BASED COMPOSITES WITH HIGH THERMAL CONDUCTIVITY AND ELECTROMAGNETICWAVE ABSORPTION
姓名
姓名拼音
XU Xinyun
学号
12233340
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
08 工学
导师
林志强
导师单位
中国科学院深圳先进技术研究院
论文答辩日期
2024-05-07
论文提交日期
2024-07-11
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

随着以 5G 为代表的高频谱通讯时代的到来,通讯设备的集成度、功 耗和通讯带宽也迅速提升,引发了日益严重的电磁波辐射和热聚集问题。 这些问题会导致设备灵敏度与可靠性下降,严重时可造成设备失灵。传统 的方法分别利用热管理材料和电磁兼容材料去解决设备热管理和电磁兼容 的问题,但是随着设备集成度逐渐提高,对多功能热管理电磁兼容复合材 料提出了更高的需求。在实际使用过程中,复合材料的导电碎屑有引起器 件短路的风险,同时复合材料过高电导率会引起电磁波的强烈反射,引发 二次污染的问题。为此,迫切需要一种兼具高热导率、高效电磁波吸收性 能、良好电绝缘性的多功能材料以满足实际使用需求。 本文首先通过外力场取向的方法成功制备了具有取向结构的碳纤维复 合材料,其中取向结构的碳纤维形成了高效导热通路,使复合材料获得高 热导率;其次,通过原位聚合方法,在碳纤维表面包覆一层高电阻率的聚 二乙烯基苯材料,提高了复合材料的绝缘性和阻抗匹配度;最终通过引入 磁性填料,进一步提高了复合材料的电磁波损耗能力,达成了高效电磁波 吸收性能。制得取向结构的碳纤维/氧化铝/硅胶复合材料纵向热导率高达 15.90 W/(m·K),但碳纤维的高电导性使碳纤维/氧化铝/硅胶复合材料电阻 率过低且与空气阻抗失配。在碳纤维表面原位生长高电阻率的聚二乙烯基 苯,制得取向结构的绝缘化碳纤维/氧化铝/硅胶复合材料,在保持其纵向 热导率为 11.75 W/(m·K)的同时,电阻率显著增加至 1.54 × 1013 Ω·cm,并 具有一定的电磁波吸收性能。进一步引入磁性铁硅铝粉末,制备绝缘化碳 纤维/铁硅铝/硅胶复合材料。在厚度为 2.4 mm 时,有效吸收带宽进一步扩 展到 5.16 GHz(12.84-18 GHz),在 16.81 GHz 时最小反射损耗为-43.54 dB。 同时在 40 Psi 的测试压力下,拥有 6.02 W/(m·K)的高热导率,材料实现了 导热性能、吸波性能、电绝缘性能的最优化

其他摘要

With the advent of the high-frequency spectrum communication era represented by 5G, the integration degree, power consumption and communication bandwidth of communication devices are also rapidly increasing, which brings increasingly serious electromagnetic wave radiation and thermal aggregation problems. Meanwhile, these problem can lead to a decrease in the sensitivity and reliability of the equipment, and in serious cases, it can cause the equipment to malfunction. The traditional method utilizes thermal management materials and electromagnetic compatibility materials to solve the problems of thermal management and electromagnetic compatibility, but the gradual increase in the integration of equipment has put forward an urgent demand for multifunctional thermal management and electromagnetic compatibility composite materials. However, in the actual use process, the conductive debris of composite materials has the risk of causing device short-circuit, and at the same time, the high conductivity of composite materials will cause strong reflection of electromagnetic waves, which will lead to the problem of secondary pollution. For this reason, there is an urgent need for a multifunctional material with high thermal conductivity, efficient electromagnetic wave absorption performance and good electrical insulation to meet the practical needs. In this work, firstly, carbon fiber composites with oriented structure were successfully prepared by the external force field orientation method, in which the oriented structure of carbon fibers formed a highly efficient thermal conductivity pathway, so that the composites obtained high thermal conductivity; secondly, a layer of high-resistivity poly(divinylbenzene) was coated on the surface of carbon fibers by the in-situ polymerization method, so as to improve the high insulating property and impedance matching degree of composites; and ultimately, by the introduction of magnetic fillers, the electromagnetic wave absorption property and good electrical insulation property were further improved. Finally, by introducing magnetic fillers, the electromagnetic wave loss capability of the composites was further improved, and the efficient electromagnetic waveabsorption performance was reached. The longitudinal thermal conductivity of the carbon fiber/Al2O3/silica composites with oriented structure was as high as 15.90 W/(m·K), but the high electrical conductivity of the carbon fibers made the carbon fiber/Al2O3/silica composites with low resistivity and mismatch with air impedance. In situ growth of high-resistivity poly(divinylbenzene) on the surface of carbon fibers produced an insulated carbon fiber/Al2O3/silica composite with an oriented structure, which significantly increased the resistivity to 1.54 × 1013 Ω·cm while maintaining its longitudinal thermal conductivity of 11.75 W/(m·K) and possessed certain electromagnetic wave absorption properties. Magnetic FeSiAl powder was further introduced to prepare insulated carbon fiber/FeSiAl/silica composites. The effective absorption bandwidth further extends to 5.16 GHz (12.84-18 GHz) at a thickness of 2.4 mm, with minimum reflection loss of -43.54 dB at 16.81 GHz while possessing a high thermal conductivity of 6.02 W/(m·K) at a test pressure of 40 Psi. Optimization of thermal conductivity, wave-absorption, and electrical insulation is achieved.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2022
学位授予年份
2024-06
参考文献列表

[1] CAI Y, YU H, CHEN C, et al. Improved thermal conductivities of vertically aligned carbon nanotube arrays using three-dimensional carbon nanotube networks [J]. Carbon, 2022, 196: 902-12.
[2] MA T, ZHAO Y, RUAN K, et al. Highly thermal conductivities, excellent mechanical robustness and flexibility, and outstanding thermal stabilities of aramid nanofiber composite papers with nacre-mimetic layered structures [J]. ACS Applied Materials & Interfaces, 2019, 12(1): 1677-86.
[3] RUAN K, GUO Y, GU J. Liquid crystalline polyimide films with high intrinsic thermal conductivities and robust toughness [J]. Macromolecules, 2021, 54(10): 4934-44.
[4] LI M, SUN Y, FENG D, et al. Thermally conductive polyvinyl alcohol composite films via introducing hetero-structured MXene@ silver fillers [J]. Nano Research, 2023, 16(5): 7820-8.
[5] YU Z, DAI T, YUAN S, et al. Electromagnetic interference shielding performance of anisotropic polyimide/graphene composite aerogels [J]. ACS applied materials & interfaces, 2020, 12(27): 30990-1001.
[6] LI S, TANG X, ZHANG Y, et al. Corrosion-resistant graphene-based magnetic composite foams for efficient electromagnetic absorption [J]. ACS Applied Materials & Interfaces, 2022, 14(6): 8297-310.
[7] MA Z, KANG S, MA J, et al. Ultraflexible and mechanically strong double-layered aramid nanofiber–Ti3C2T x mxene/silver nanowire nanocomposite papers for highperformance electromagnetic interference shielding [J]. Acs Nano, 2020, 14(7): 8368-82.
[8] YE Z, WANG K, LI X, et al. Preparation and characterization of ferrite/carbon aerogel composites for electromagnetic wave absorbing materials [J]. Journal of Alloys and Compounds, 2022, 893: 162396.
[9] MA Z, XIANG X, SHAO L, et al. Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing [J]. Angewandte Chemie International Edition, 2022, 61(15): e202200705.
[10] JIA L-C, ZHANG G, XU L, et al. Robustly superhydrophobic conductive textile for efficient electromagnetic interference shielding [J]. ACS applied materials & interfaces, 2018, 11(1): 1680-8.
[11] ZHANG Y, RUAN K, GUO Y, et al. Recent advances of MXenes‐based optical functional materials [J]. Advanced Photonics Research, 2023, 4(12): 2300224.
[12] HUANG X, YU G, ZHANG Y, et al. Design of cellular structure of graphene aerogels for electromagnetic wave absorption [J]. Chemical Engineering Journal, 2021, 426: 131894.
[13] LI L, LI M, ZHANG Z, et al. Robust composite film with high thermal conductivity and excellent mechanical properties by constructing a long-range ordered sandwich structure [J]. Journal of Materials Chemistry A, 2022, 10(18): 9922-31.
[14] ZHANG R-H, SHI X-T, TANG L, et al. Thermally conductive and insulating epoxy composites by synchronously incorporating Si-sol functionalized glass fibers and boron nitride fillers [J]. Chinese Journal of Polymer Science, 2020, 38: 730-9.
[15] ZHANG Y, RUAN K, ZHOU K, et al. Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding [J]. Advanced Materials, 2023, 35(16): 2211642.
[16] ZHANG Y, HEO Y-J, SON Y-R, et al. Recent advanced thermal interfacial materials: A review of conducting mechanisms and parameters of carbon materials [J]. Carbon, 2019, 142: 445-60.
[17] HO C Y, POWELL R W, LILEY P E. Thermal conductivity of the elements [J]. Journal of Physical and Chemical Reference Data, 1972, 1(2): 279-421.
[18] BALANDIN A A. Phononics of graphene and related materials [J]. ACS nano, 2020, 14(5): 5170-8.
[19] YU H, GUO P, QIN M, et al. Highly thermally conductive polymer composite enhanced by two-level adjustable boron nitride network with leaf venation structure [J]. Composites Science and Technology, 2022, 222: 109406.
[20] ZHANG F, FENG Y, QIN M, et al. Stress controllability in thermal and electrical conductivity of 3D elastic graphene ‐ crosslinked carbon nanotube sponge/polyimide nanocomposite [J]. Advanced Functional Materials, 2019, 29(25):1901383.
[21] LV F, QIN M, ZHANG F, et al. High cross-plane thermally conductive hierarchical composite using graphene-coated vertically aligned carbon nanotubes/graphite [J]. Carbon, 2019, 149: 281-9.
[22] MORTAZAVI B, BANIASSADI M, BARDON J, et al. Modeling of two-phase random composite materials by finite element, Mori–Tanaka and strong contrast methods [J]. Composites Part B: Engineering, 2013, 45(1): 1117-25.
[23] XU X, CHEN J, ZHOU J, et al. Thermal conductivity of polymers and their nanocomposites [J]. Advanced Materials, 2018, 30(17): 1705544.
[24] GUO Y, RUAN K, SHI X, et al. Factors affecting thermal conductivities of the polymers and polymer composites: A review [J]. Composites Science and Technology, 2020, 193: 108134.
[25] QIN M, XU Y, CAO R, et al. Efficiently controlling the 3D thermal conductivity of a polymer nanocomposite via a hyperelastic double ‐ continuous network of graphene and sponge [J]. Advanced functional materials, 2018, 28(45): 1805053.
[26] GU J, XU S, ZHUANG Q, et al. Hyperbranched polyborosilazane and boron nitride modified cyanate ester composite with low dielectric loss and desirable thermal conductivity [J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(2): 784-90.
[27] YANG X, LIANG C, MA T, et al. A review on thermally conductive polymeric composites: classification, measurement, model and equations, mechanism and fabrication methods [J]. Advanced composites and hybrid materials, 2018, 1: 207-30.
[28] WANG S, FENG D, GUAN H, et al. Highly efficient thermal conductivity of polydimethylsiloxane composites via introducing “Line-Plane”-like heterostructured fillers [J]. Composites Part A: Applied Science and Manufacturing, 2022, 157: 106911.
[29] LV P, TAN X-W, YU K-H, et al. Super-elastic graphene/carbon nanotube aerogel: A novel thermal interface material with highly thermal transport properties [J]. Carbon, 2016, 99: 222-8.
[30] QIN M, FENG Y, JI T, et al. Enhancement of cross-plane thermal conductivity and mechanical strength via vertical aligned carbon nanotube@ graphite architecture [J]. Carbon, 2016, 104: 157-68.
[31] ZENG X, NIE T, ZHAO C, et al. Coupling between the 2D “ligand” and 2D “host” and their assembled hierarchical heterostructures for electromagnetic wave absorption [J]. ACS Applied Materials & Interfaces, 2022, 14(36): 41235-45.
[32] HE X, PENG H, XIONG Z, et al. A sustainable and low-cost route to prepare magnetic particle-embedded ultra-thin carbon nanosheets with broadband microwave absorption from biowastes [J]. Carbon, 2022, 198: 195-206.
[33] LIANG C, HE J, ZHANG Y, et al. MOF-derived CoNi@ C-silver nanowires/cellulose nanofiber composite papers with excellent thermal management capability for outstanding electromagnetic interference shielding [J]. Composites Science and Technology, 2022, 224: 109445.
[34] XU J, SHU R, WAN Z, et al. Construction of three-dimensional hierarchical porous nitrogen-doped reduced graphene oxide/hollow cobalt ferrite composite aerogels toward highly efficient electromagnetic wave absorption [J]. Journal of Materials Science & Technology, 2023, 132: 193-200.
[35] WANG S, GONG H, ASHFAQ M Z, et al. Introducing MWCNTs conductive network in polymer-derived SiCN ceramics for broadband electromagnetic wave absorption [J]. Ceramics International, 2022, 48(16): 23989-4002.
[36] REN S, YU H, WANG L, et al. State of the art and prospects in metal-organic framework-derived microwave absorption materials [J]. Nano-Micro Letters, 2022, 14(1): 68.
[37] WU Y, CHEN L, HAN Y, et al. Hierarchical construction of CNT networks in aramid papers for high-efficiency microwave absorption [J]. Nano Research, 2023, 16(5): 7801-9.
[38] ZHANG M, CAO M-S, SHU J-C, et al. Electromagnetic absorber converting radiation for multifunction [J]. Materials Science and Engineering: R: Reports, 2021, 145: 100627.
[39] WANG L, MA Z, QIU H, et al. Significantly enhanced electromagnetic interference shielding performances of epoxy nanocomposites with long-range aligned lamellar structures [J]. Nano-Micro Letters, 2022, 14(1): 224.
[40] WEN B, YANG G, ZHOU X, et al. Intelligent diffusion regulation induced in-situ growth of cobalt nanoclusters on carbon nanotubes for excellent electromagnetic wave absorption [J]. Journal of Colloid and Interface Science, 2023, 634: 74-85.
[41] HE J, HAN M, WEN K, et al. Absorption-dominated electromagnetic interference shielding assembled composites based on modular design with infrared camouflage and response switching [J]. Composites Science and Technology, 2023, 231: 109799.
[42] WANG C, LIU Y, JIA Z, et al. Multicomponent nanoparticles synergistic onedimensional nanofibers as heterostructure absorbers for tunable and efficient microwave absorption [J]. Nano-Micro Letters, 2023, 15(1): 13.
[43] JIANG T, WANG Z, LUO Z, et al. Constructing heterogeneous conductive network with core-shell Ag@ Fe3O4 for dual-band effective microwave absorption [J]. Applied Surface Science, 2023, 610: 155231.
[44] QIU J, XIN Z, ZHANG M, et al. Facile synthesis of yolk-shell pompon-like Fe@ void@ CeO2@ Ni nanospheres with enhanced microwave absorption properties [J]. Applied Surface Science, 2023, 613: 155873.
[45] ZHOU J, JIA Z, ZHANG Y, et al. Construction of 3D conductive network by flowerlike V2O3 synergy with magnetic NiCo for superior electromagnetic wave absorption performance [J]. Materials Today Physics, 2022, 29: 100902.
[46] LIANG H, XING H, QIN M, et al. Bamboo-like short carbon fibers@ Fe3O4@ phenolic resin and honeycomb-like short carbon fibers@ Fe3O4@ FeO composites as high-performance electromagnetic wave absorbing materials [J]. Composites Part A: Applied Science and Manufacturing, 2020, 135: 105959.
[47] HUANG M, WANG L, LI X, et al. Magnetic interacted interaction effect in MXene skeleton: enhanced thermal‐generation for electromagnetic interference shielding [J]. Small, 2022, 18(27): 2201587.
[48] CHAKRABORTY T, SHARMA S, DEBNATH T, et al. Fabrication of heterostructure composites of Ni-Zn-Cu-Ferrite-C3N4-Poly (vinylidene fluoride) films for the enhancement of electromagnetic interference shielding effectiveness [J]. Chemical Engineering Journal, 2021, 420: 127683.
[49] JIANG Q, QIAO Y, UDDIN A, et al. Tailoring electromagnetic response of threedimensional waffle-like metacomposite based on arrangement angle of ferromagnetic microwires [J]. Composites Part B: Engineering, 2022, 247: 110298.
[50] ZHANG Y, YU Y, YUAN Y, et al. Reduced graphene oxide-wrapped Fe–Fe 3 O 4@ mSiO 2 hollow core–shell composites with enhanced electromagnetic wave absorption properties [J]. Journal of Materials Chemistry C, 2022, 10(41): 15620-8.
[51] GAO J, MA Z, LIU F, et al. Synthesis of carbon-coated cobalt ferrite core–shell structure composite: A method for enhancing electromagnetic wave absorption properties by adjusting impedance matching [J]. Chinese Journal of Chemical Engineering, 2022, 47: 206-17.HOU X, CHEN Y, DAI W, et al. Highly thermal conductive polymer composites via constructing micro-phragmites communis structured carbon fibers [J]. Chemical Engineering Journal, 2019, 375: 121921.
[52] REN L, WANG Y, JIA Z, et al. Controlling the heterogeneous interfaces of Fe3O4/N-doped porous carbon via facile swelling for enhancing the electromagnetic wave absorption [J]. Composites Communications, 2022, 29: 101052.
[53] ZHENG-WEI C, GGUAN-MING Y, ZHI-JUN D. Research progress on carbon materials with high-oriented thermal conductivity [J]. Materials China, 2020, 39(6): 450-7.
[54] ZHAO J, GU Z, ZHANG Q. Stacking MoS2 flower-like microspheres on pomelo peels-derived porous carbon nanosheets for high-efficient X-band electromagnetic wave absorption [J]. Nano Research, 2023: 1-9.
[55] LOU Z, WANG Q, KARA U I, et al. Biomass-derived carbon heterostructures enable environmentally adaptive wideband electromagnetic wave absorbers [J]. Nanomicro letters, 2022, 14: 1-16.
[56] CHENG Z, WANG R, CAO Y, et al. Intelligent off/on switchable microwave absorption performance of reduced graphene oxide/VO2 composite aerogel [J]. Advanced Functional Materials, 2022, 32(40): 2205160.
[57] YIN W, QIN M, YU H, et al. Hyperelastic graphene aerogels reinforced by in-suit welding polyimide nano fiber with leaf skeleton structure and adjustable thermal conductivity for morphology and temperature sensing [J]. Advanced Fiber Materials, 2023, 5(3): 1037-49.
[58] WANG Y-Y, SUN W-J, YAN D-X, et al. Ultralight carbon nanotube/graphene/polyimide foam with heterogeneous interfaces for efficient electromagnetic interference shielding and electromagnetic wave absorption [J]. Carbon, 2021, 176: 118-25.
[59] SHENG A, YANG Y, YAN D-X, et al. Self-assembled reduced graphene oxide/nickel nanofibers with hierarchical core-shell structure for enhanced electromagnetic wave absorption [J]. Carbon, 2020, 167: 530-40.
[60] WANG Q, HAN X, SOMMERS A, et al. A review on application of carbonaceous materials and carbon matrix composites for heat exchangers and heat sinks [J]. International Journal of refrigeration, 2012, 35(1): 7-26.
[61] HOU X, CHEN Y, DAI W, et al. Highly thermal conductive polymer composites via constructing micro-phragmites communis structured carbon fibers [J]. Chemical Engineering Journal, 2019, 375: 121921.
[62] WU Q, LI W, LIU C, et al. Carbon fiber reinforced elastomeric thermal interface materials for spacecraft [J]. Carbon, 2022, 187: 432-8
[63] UETANI K, ATA S, TOMONOH S, et al. Elastomeric thermal interface materials with high through-plane thermal conductivity from carbon fiber fillers vertically aligned by electrostatic flocking [J]. Advanced Materials (Deerfield Beach, Fla), 2014, 26(33): 5857-62.
[64] MA J, SHANG T, REN L, et al. Through-plane assembly of carbon fibers into 3D skeleton achieving enhanced thermal conductivity of a thermal interface material [J]. Chemical Engineering Journal, 2020, 380: 122550.
[65] LI J, YE Z, MO P, et al. Compliance-tunable thermal interface materials based on vertically oriented carbon fiber arrays for high-performance thermal management [J]. Composites Science and Technology, 2023, 234.
[66] CHUNG D. Performance of thermal interface materials [J]. Small, 2022, 18(16): 2200693.
[67] ZHOU Y, CHEN L, JIAN M, et al. Recent research progress of ferrite multielement microwave absorbing composites [J]. Advanced Engineering Materials, 2022, 24(12): 2200526.
[68] XIE X, WANG B, WANG Y, et al. Spinel structured MFe2O4 (M= Fe, Co, Ni, Mn, Zn) and their composites for microwave absorption: A review [J]. Chemical Engineering Journal, 2022, 428: 131160.
[69] WANG B, WU Q, FU Y, et al. A review on carbon/magnetic metal composites for microwave absorption [J]. Journal of materials science & technology, 2021, 86: 91-109.
[70] LI T, ZHI D-D, GUO Z-H, et al. 3D porous biomass-derived carbon materials: biomass sources, controllable transformation and microwave absorption application [J]. Green Chemistry, 2022, 24(2): 647-74.
[71] SUN H, CHE R, YOU X, et al. Cross‐stacking aligned carbon‐nanotube films to tune microwave absorption frequencies and increase absorption intensities [J]. Advanced materials, 2014, 26(48): 8120-5.
[72] ZHENG J, WEI X, LI Y, et al. Stretchable polyurethane composite foam triboelectric nanogenerator with tunable microwave absorption properties at elevated temperature [J]. Nano Energy, 2021, 89: 106397.
[73] FANG Y, XUE W, ZHAO R, et al. Effect of nanoporosity on the electromagnetic wave absorption performance in a biomass-templated Fe 3 O 4/C composite: a small-angle neutron scattering study [J]. Journal of Materials Chemistry C, 2020, 8(1): 319-27.
[74] LI J, LU W, SUHR J, et al. Superb electromagnetic wave-absorbing composites based on large-scale graphene and carbon nanotube films [J]. Scientific reports, 2017, 7(1): 2349.
[75] JIANG S, QIAN K, YU K, et al. Controllable synthesis and microwave absorption properties of Fe3O4@ f-GNPs nanocomposites [J]. Composites Communications, 2020, 20: 100363.
[76] ZENG X, ZHU L, YANG B, et al. Necklace-like Fe3O4 nanoparticle beads on carbon nanotube threads for microwave absorption and supercapacitors [J]. Materials & Design, 2020, 189: 108517.
[77] BANDARU S, MURTHY N, KULKARNI R, et al. Magnetic ferrite/carbonized cotton fiber composites for improving electromagnetic absorption properties at gigahertz frequencies [J]. Journal of Materials Science & Technology, 2021, 86: 127-38.
[78] SHU X, FANG B, WU W, et al. Acicular or octahedral Fe3O4/rice husk-based activated carbon composites through graphitization synthesis as superior electromagnetic wave absorbers [J]. Composites Part A: Applied Science and Manufacturing, 2021, 151: 106635.
[79] WU Z, CHENG H W, JIN C, et al. Dimensional design and core–shell engineering of nanomaterials for electromagnetic wave absorption [J]. Advanced Materials, 2022, 34(11): 2107538.
[80] MU Y, MA Z-H, LIANG H-S, et al. Ferrite-based composites and morphologycontrolled absorbers [J]. Rare Metals, 2022, 41(9): 2943-70.
[81] LI Z, LI X, ZONG Y, et al. Solvothermal synthesis of nitrogen-doped graphene decorated by superparamagnetic Fe3O4 nanoparticles and their applications as enhanced synergistic microwave absorbers [J]. Carbon, 2017, 115: 493-502.
[82] GUO L, AN Q-D, XIAO Z-Y, et al. Inherent N-doped honeycomb-like carbon/Fe3O4 composites with versatility for efficient microwave absorption and wastewater treatment [J]. ACS sustainable chemistry & engineering, 2019, 7(10): 9237-48.
[83] MENG X, LEI W, YANG W, et al. Fe3O4 nanoparticles coated with ultra-thin carbon layer for polarization-controlled microwave absorption performance [J]. Journal of colloid and interface science, 2021, 600: 382-9.
[84] SU Z, ZHANG W, LU J, et al. Oxygen-vacancy-rich Fe 3 O 4/carbon nanosheets enabling high-attenuation and broadband microwave absorption through the integration of interfacial polarization and charge-separation polarization [J]. Journal of Materials Chemistry A, 2022, 10(15): 8479-90.
[85] SUN Q, SUN L, CAI Y, et al. Activated carbon fiber/Fe 3 O 4 composite with enhanced electromagnetic wave absorption properties [J]. RSC advances, 2018, 8(61): 35337-42.
[86] QUAN B, LIANG X, YI H, et al. Constructing hierarchical porous nanospheres for versatile microwave response approaches: the effect of architectural design [J]. Dalton Transactions, 2017, 46(41): 14264-9.
[87] ZHAO X, HUANG Y, LIU X, et al. Magnetic nanorods/carbon fibers heterostructures coated with flower-like MoS2 layers for superior microwave absorption [J]. Carbon, 2023, 213.
[88] LIU X, ZHANG S, YU M, et al. WS2 nanosheets anchored on N-doped carbon fibers for superior electromagnetic wave absorption [J]. Chemical Engineering Journal, 2023, 465.
[89] ZIVKOVIC I, MURK A. Boron nitride loading for thermal conductivity improvement of composite microwave absorbers [J]. Electronics letters, 2012, 48(18): 1130-1.
[90] SINGH S K, AKHTAR M, KAR K K. Impact of Al2O3, TiO2, ZnO and BaTiO3 on the microwave absorption properties of exfoliated graphite/epoxy composites at Xband frequencies [J]. Composites Part B: Engineering, 2019, 167: 135-46.
[91] ZHAO J, ZHANG J, WANG L, et al. Fabrication and investigation on ternary heterogeneous MWCNT@ TiO2-C fillers and their silicone rubber wave-absorbing composites [J]. Composites Part A: Applied Science and Manufacturing, 2020, 129: 105714.
[92] ZHANG Y, LI S, TANG X, et al. Ultralight and ordered lamellar polyimide-based graphene foams with efficient broadband electromagnetic absorption [J]. Journal of Materials Science & Technology, 2022, 102: 97-104.
[93] LIU X, LI Y, SUN X, et al. Off/on switchable smart electromagnetic interference shielding aerogel [J]. Matter, 2021, 4(5): 1735-47.
[94] MOU P, ZHAO J, WANG G, et al. BCN nanosheets derived from coconut shells with outstanding microwave absorption and thermal conductive properties [J]. Chemical Engineering Journal, 2022, 437: 135285.
[95] WANG H, BI H, LIANG D, et al. Absorption-dominated electromagnetic shielding and excellent thermal conduction properties of poly (vinylidene fluoride)/SnBi58/Co-C composites with layered structure [J]. Journal of Alloys and Compounds, 2022, 921: 165998.
[96] GHOSH S K, DAS T K, GANGULY S, et al. Carbon nanotubes and carbon nanofibers based co-continuous thermoplastic elastomeric blend composites for efficient microwave shielding and thermal management [J]. Composites Part A: Applied Science and Manufacturing, 2022, 161: 107118.
[97] QIAN Y, TAO Y, LI W, et al. High electromagnetic wave absorption and thermal management performance in 3D CNF@ C-Ni/epoxy resin composites [J]. Chemical Engineering Journal, 2021, 425: 131608.
[98] JIAO Z, HUYAN W, YANG F, et al. Achieving ultra-wideband and elevated temperature electromagnetic wave absorption via constructing lightweight porousrigid structure [J]. Nano-Micro Letters, 2022, 14(1): 173.
[99] ZHOU M, WAN G, MOU P, et al. CNT@ NiO/natural rubber with excellent impedance matching and low interfacial thermal resistance toward flexible and heatconducting microwave absorption applications [J]. Journal of Materials Chemistry C, 2021, 9(3): 869-80.
[100] PAN Y, YANG B, JIA N, et al. Enhanced thermally conductive and microwave absorbing properties of polymethyl methacrylate/Ni@ GNP nanocomposites [J]. Industrial & Engineering Chemistry Research, 2021, 60(33): 12316-27.
[101] LIU H, FU R, SU X, et al. SCF-NiFe 2 O 4/epoxy composites with high thermal conductivity and electromagnetic interference resistance [J]. Journal of Materials Science: Materials in Electronics, 2020, 31: 21325-34.
[102] REN K, QIN H, LIU H, et al. Manipulating interfacial thermal conduction of 2D janus heterostructure via a thermo‐mechanical coupling [J]. Advanced Functional Materials, 2022, 32(18): 2110846.
[103] BAI Y, YANG H, HE L, et al. Construction of core-shell BN-OH@ Fe3O4@ PAn nanocomposite with ultra-wide microwave absorption and efficiency thermal management [J]. Journal of Alloys and Compounds, 2023, 936: 168174.
[104] BAI Y, HE L, LV P, et al. Impedance-matched (hydroxylated nano-BN/reduced graphene oxide)@ Fe3O4/polyaniline composite for efficient microwave absorption and thermal management [J]. Materials Chemistry and Physics, 2023, 295: 127193.
[105] ZHANG Z, WANG J, SHANG J, et al. A Through-Thickness Arrayed Carbon Fibers Elastomer with Horizontal Segregated Magnetic Network for Highly Efficient Thermal Management and Electromagnetic Wave Absorption [J]. Small, 2023, 19(4): e2205716.
[106] YANG X, FU K, WU L, et al. Synergistic enhancement of thermal conduction and microwave absorption of silica films based on graphene/chiral PPy/Al2O3 ternary aerogels [J]. Carbon, 2022, 199: 1-12.
[107] XING L, CHEN Y, YANG Y, et al. Incorporation of FexOy nanoparticles into 3D interlinked porous carbon nanofiber networks to synergistically enhance the electrical insulation, electromagnetic wave absorbing/shielding performance and thermal conductivity [J]. Chemical Engineering Journal, 2023, 469.
[108] WU G, JIA Z, ZHOU X, et al. Interlayer controllable of hierarchical MWCNTs@ C@ FexOy cross-linked composite with wideband electromagnetic absorption performance [J]. Composites Part A: Applied Science and Manufacturing, 2020, 128: 105687.
[109] SLEDZINSKA M, QUEY R, MORTAZAVI B, et al. Record low thermal conductivity of polycrystalline MoS2 films: tuning the thermal conductivity by grain orientation [J]. ACS applied materials & interfaces, 2017, 9(43): 37905-11.
[110] RUAN K, GU J. Ordered alignment of liquid crystalline graphene fluoride forsignificantly enhancing thermal conductivities of liquid crystalline polyimide composite films [J]. Macromolecules, 2022, 55(10): 4134-45.
[111] RUAN K, ZHONG X, SHI X, et al. Liquid crystal epoxy resins with high intrinsic thermal conductivities and their composites: A mini-review [J]. Materials Today Physics, 2021, 20: 100456.
[112] GUO Y, RUAN K, WANG G, et al. Advances and mechanisms in polymer composites toward thermal conduction and electromagnetic wave absorption [J]. Sci Bull (Beijing), 2023, 68(11): 1195-212.
[113] HU Y, DU G, CHEN N. A novel approach for Al 2 O 3 /epoxy composites with high strength and thermal conductivity [J]. Composites Science and Technology, 2016, 124: 36-43.
[114] LIU F, LI Y, HAO S, et al. Well-aligned MXene/chitosan films with humidity response for high-performance electromagnetic interference shielding [J]. Carbohydr Polym, 2020, 243: 116467.
[115] TAN X, YUAN Q, QIU M, et al. Rational design of graphene/polymer composites with excellent electromagnetic interference shielding effectiveness and high thermal conductivity: a mini review [J]. Journal of Materials Science & Technology, 2022, 117: 238-50.
[116] HAN J, DU G, GAO W, et al. An Anisotropically High Thermal Conductive Boron Nitride/Epoxy Composite Based on Nacre‐Mimetic 3D Network [J]. Advanced Functional Materials, 2019, 29(13).
[117] MA J, SHANG T, REN L, et al. Through-plane assembly of carbon fibers into 3D skeleton achieving enhanced thermal conductivity of a thermal interface material [J]. Chemical Engineering Journal, 2020, 380.
[118] LIN Y, KANG Q, LIU Y, et al. Flexible, Highly Thermally Conductive and Electrically Insulating Phase Change Materials for Advanced Thermal Management of 5G Base Stations and Thermoelectric Generators [J]. Nanomicro Lett, 2023, 15(1): 31.
[119] LIANG L, GU W, WU Y, et al. Heterointerface Engineering in Electromagnetic Absorbers: New Insights and Opportunities [J]. Adv Mater, 2022, 34(4): e2106195.
[120] LV H, GUO Y, ZHAO Y, et al. Achieving tunable electromagnetic absorber via graphene/carbon sphere composites [J]. Carbon, 2016, 110: 130-7.
[121] KAGAWA Y, MATSUMURA K, IBA H, et al. Potential of short Si–Ti–C–O fiberreinforced epoxy matrix composite as electromagnetic wave absorbing material [J]. Journal of materials science, 2007, 42: 1116-21.
[122] GUO C, ITOH K, SUN D, et al. Carbon nanotube/polysiloxane foams with tunable absorption bands for electromagnetic wave shielding [J]. ACS Applied Nano Materials, 2020, 3(6): 5944-54.
[123] SUN M-X, CAO W-Q, ZHU P-Y, et al. Thermally tailoring magnetic molecular sponges through self-propagating combustion to tune magnetic-dielectric synergy toward high-efficiency microwave absorption and attenuation [J]. Advanced Composites and Hybrid Materials, 2023, 6(1): 54.
[124] HUANG W, QIU Q, YANG X, et al. Ultrahigh density of atomic CoFe-electron synergy in noncontinuous carbon matrix for highly efficient magnetic wave adsorption [J]. Nano-Micro Letters, 2022, 14(1): 96.
[125] HUANG W, GAO W, ZUO S, et al. Hollow MoC/NC sphere for electromagnetic wave attenuation: direct observation of interfacial polarization on nanoscale heterointerfaces [J]. Journal of Materials Chemistry A, 2022, 10(3): 1290-8.
[126] WEI H, YANG S, FENG P, et al. Optimization of Ti with modified SiC ceramics for electromagnetic absorption properties [J]. Materials Characterization, 2023, 198: 112761.
[127] ZHOU Z, LAN D, REN J, et al. Controllable heterogeneous interfaces and dielectric modulation of biomass-derived nanosheet metal-sulfide complexes for highperformance electromagnetic wave absorption [J]. Journal of Materials Science & Technology, 2024, 185: 165-73.
[128] ZHU Y, LI X, CHEN P, et al. Ru doped magnetic nanoparticles embedded in mesoporous silica for effective microwave absorption by interface engineering and DFT calculations [J]. Microporous and Mesoporous Materials, 2022, 333: 111763.

所在学位评定分委会
材料与化工
国内图书分类号
TB333
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/779128
专题中国科学院深圳理工大学(筹)联合培养
推荐引用方式
GB/T 7714
许馨允. 高效导热吸波碳基复合材料的制备及性能研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12233340-许馨允-中国科学院深圳(5829KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[许馨允]的文章
百度学术
百度学术中相似的文章
[许馨允]的文章
必应学术
必应学术中相似的文章
[许馨允]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。