[
[1] VON NEUMANN J. First draft of a report on the EDVAC [J]. IEEE Annals of the History of Computing, 1993, 15(4): 27-75.
[2] ZENG S, TANG Z, LIU C, et al. Electronics based on two-dimensional materials: Status and outlook [J]. Nano Research, 2021, 14: 1752-67.
[3] SCHNEIDER M L, DONNELLY C A, RUSSEK S E, et al. Ultralow power artificial synapses using nanotextured magnetic Josephson junctions [J]. Science Advances, 2018, 4(1): e1701329.
[4] PEREDA A E. Electrical synapses and their functional interactions with chemical synapses [J]. Nature Reviews Neuroscience, 2014, 15(4): 250-63.
[5] STRUKOV D B, SNIDER G S, STEWART D R, et al. The missing memristor found [J]. Nature, 2008, 453(7191): 80-3.
[6] 马可. 基于晶体管人工突触的光电调控的研究 [D]; 南京邮电大学.
[7] BAI B, SHU H, WANG X, et al. Towards silicon photonic neural networks for artificial intelligence [J]. Science China Information Sciences, 2020, 63: 1-14.
[8] ZHUGE X, WANG J, ZHUGE F. Photonic synapses for ultrahigh‐speed neuromorphic computing [J]. Physica Status Solidi (RRL)–Rapid Research Letters, 2019, 13(9): 1900082.
[9] WANG G, WANG R, KONG W, et al. Simulation of retinal ganglion cell response using fast independent component analysis [J]. Cognitive Neurodynamics, 2018, 12: 615-24.
[10] PARK H L, LEE Y, KIM N, et al. Flexible neuromorphic electronics for computing, soft robotics, and neuroprosthetics [J]. Advanced Materials, 2020, 32(15): 1903558.
[11] LE V-Q, DO T-H, RETAMAL J R D, et al. Van der waals heteroepitaxial AZO/NiO/AZO/muscovite (ANA/muscovite) transparent flexible memristor [J]. Nano Energy, 2019, 56: 322-9.
[12] CHEN F-F, ZHU Y-J, CHEN F, et al. Fire alarm wallpaper based on fire-resistant hydroxyapatite nanowire inorganic paper and graphene oxide thermosensitive sensor [J]. ACS Nano, 2018, 12(4): 3159-71.
[13] SHANG J, LIU G, YANG H, et al. Thermally stable transparent resistive random access memory based on all‐oxide heterostructures [J]. Advanced Functional Materials, 2014, 24(15): 2171-9.
[14] YE L, GAO Z, FU J, et al. Overview of memristor-based neural network design and applications [J]. Frontiers in Physics, 2022, 10: 839243.
[15] CAO Z, SUN B, ZHOU G, et al. Memristor-based neural networks: a bridge from device to artificial intelligence [J]. Nanoscale Horizons, 2023, 8(6): 716-745.
[16] XU W, WANG J, YAN X. Advances in memristor-based neural networks [J]. Frontiers in Nanotechnology, 2021, 3: 645995.
[17] YAO P, WU H, GAO B, et al. Fully hardware-implemented memristor convolutional neural network [J]. Nature, 2020, 577(7792): 641-6.
[18] WANG Z, JOSHI S, SAVEL’EV S, et al. Fully memristive neural networks for pattern classification with unsupervised learning [J]. Nature Electronics, 2018, 1(2): 137-45.
[19] PARK S-O, JEONG H, PARK J, et al. Experimental demonstration of highly reliable dynamic memristor for artificial neuron and neuromorphic computing [J]. Nature Communications, 2022, 13(1): 2888.
[20] KUMAR S, WANG X, STRACHAN J P, et al. Dynamical memristors for higher-complexity neuromorphic computing [J]. Nature Reviews Materials, 2022, 7(7): 575-91.
[21] ZIDAN M A, STRACHAN J P, LU W D. The future of electronics based on memristive systems [J]. Nature Electronics, 2018, 1(1): 22-9.
[22] CHOI S, JANG S, MOON J-H, et al. A self-rectifying TaOy/nanoporous TaOx memristor synaptic array for learning and energy-efficient neuromorphic systems [J]. NPG Asia Materials, 2018, 10(12): 1097-106.
[23] KRISHNAPRASAD A, DEV D, SHAWKAT M S, et al. Graphene/MoS2/SiOx memristive synapses for linear weight update [J]. 2D Materials and Applications, 2023, 7(1): 22.
[24] ZHANG Y, MAO G-Q, ZHAO X, et al. Evolution of the conductive filament system in HfO2-based memristors observed by direct atomic-scale imaging [J]. Nature Communications, 2021, 12(1): 7232.
[25] STATHOPOULOS S, KHIAT A, TRAPATSELI M, et al. Multibit memory operation of metal-oxide bi-layer memristors [J]. Scientific Reports, 2017, 7(1): 17532.
[26] WEDIG A, LUEBBEN M, CHO D-Y, et al. Nanoscale cation motion in TaOx, HfOx and TiO x memristive systems [J]. Nature Nanotechnology, 2016, 11(1): 67-74.
[27] SANGWAN V K, JARIWALA D, KIM I S, et al. Gate-tunable memristive phenomena mediated by grain boundaries in single-layer MoS2 [J]. Nature Nanotechnology, 2015, 10(5): 403-6.
[28] BESSONOV A A, KIRIKOVA M N, PETUKHOV D I, et al. Layered memristive and memcapacitive switches for printable electronics [J]. Nature Materials, 2015, 14(2): 199-204.
[29] QIAN K, TAY R Y, NGUYEN V C, et al. Hexagonal boron nitride thin film for flexible resistive memory applications [J]. Advanced Functional Materials, 2016, 26(13): 2176-84.
[30] FANG Y, ZHAI S, CHU L, et al. Advances in halide perovskite memristor from lead-based to lead-free materials [J]. ACS Applied Materials & Interfaces, 2021, 13(15): 17141-57.
[31] YANG J-Q, WANG R, WANG Z-P, et al. Leaky integrate-and-fire neurons based on perovskite memristor for spiking neural networks [J]. Nano Energy, 2020, 74: 104828.
[32] JOHN R A, SHAH N, VISHWANATH S K, et al. Halide perovskite memristors as flexible and reconfigurable physical unclonable functions [J]. Nature Communications, 2021, 12(1): 3681.
[33] ZHANG T, WANG L, DING W, et al. Rationally designing high-performance versatile organic memristors through molecule-mediated ion movements [J]. Advanced Materials, 2023, 35(40): 2302863.
[34] ZHAO Z, EL-KHOULY M E, CHE Q, et al. Redox-active azulene-based 2D conjugated covalent organic framework for organic memristors [J]. Angewandte Chemie International Edition, 2023, 62(7): 202217249.
[35] SUN B, NGAI J H, ZHOU G, et al. Voltage-controlled conversion from CDS to MDS in an azobenzene-based organic memristor for information storage and logic operations [J]. ACS Applied Materials & Interfaces, 2022, 14(36): 41304-15.
[36] HUH W, LEE D, LEE C H. Memristors based on 2D materials as an artificial synapse for neuromorphic electronics [J]. Advanced Materials, 2020, 32(51): 2002092.
[37] ZHANG X, ZHAO X, SHAN X, et al. Humidity effect on resistive switching characteristics of the CH3NH3PbI3 memristor [J]. ACS Applied Materials & Interfaces, 2021, 13(24): 28555-63.
[38] PRUDNIKOV N V, LAPKIN D A, EMELYANOV A V, et al. Associative STDP-like learning of neuromorphic circuits based on polyaniline memristive microdevices [J]. Journal of Physics D: Applied Physics, 2020, 53(41): 414001.
[39] LUO X, MING J, GAO J, et al. Low-power flexible organic memristor based on PEDOT: PSS/pentacene heterojunction for artificial synapse [J]. Frontiers in Neuroscience, 2022, 16: 1016026.
[40] YUAN L, LIU S, CHEN W, et al. Organic memory and memristors: from mechanisms, materials to devices [J]. Advanced Electronic Materials, 2021, 7(11): 2100432.
[41] SANGWAN V K, HERSAM M C. Neuromorphic nanoelectronic materials [J]. Nature Nanotechnology, 2020, 15(7): 517-28.
[42] GOI E, ZHANG Q, CHEN X, et al. Perspective on photonic memristive neuromorphic computing [J]. PhotoniX, 2020, 1: 1-26.
[43] YOUNGBLOOD N, RíOS OCAMPO C A, PERNICE W H, et al. Integrated optical memristors [J]. Nature Photonics, 2023, 17(7): 561-72.
[44] SUNG S H, KIM T J, SHIN H, et al. Simultaneous emulation of synaptic and intrinsic plasticity using a memristive synapse [J]. Nature Communications, 2022, 13(1): 2811.
[45] DU N, ZHAO X, DI VENTRA M, et al. Synaptic plasticity in memristive artificial synapses and their robustness against noisy inputs [J]. Frontiers in Neuroscience, 2021, 15: 660894.
[46] GAO S, LIU G, YANG H, et al. An oxide schottky junction artificial optoelectronic synapse [J]. ACS Nano, 2019, 13(2): 2634-42.
[47] KUMAR M, ABBAS S, KIM J. All-oxide-based highly transparent photonic synapse for neuromorphic computing [J]. ACS Applied Materials & Interfaces, 2018, 10(40): 34370-6.
[48] SHRIVASTAVA S, KEONG L B, PRATIK S, et al. Fully photon controlled synaptic memristor for neuro‐inspired computing [J]. Advanced Electronic Materials, 2023, 9(3): 2201093.
[49] DANG B, LIU K, WU X, et al. One‐phototransistor–one‐memristor array with high‐linearity light‐tunable weight for optic neuromorphic computing [J]. Advanced Materials, 2023, 35(37): 2204844.
[50] HUANG W, HANG P, WANG Y, et al. Zero-power optoelectronic synaptic devices [J]. Nano Energy, 2020, 73: 104790.
[51] ZHOU L, ZHANG S-R, YANG J-Q, et al. A UV damage-sensing nociceptive device for bionic applications [J]. Nanoscale, 2020, 12(3): 1484-94.
[52] CAO F, HU Z, YAN T, et al. A Dual‐Functional Perovskite‐Based photodetector and memristor for visual memory [J]. Advanced Materials, 2023, 35(44): 2304550.
[53] TAN H, NI Z, PENG W, et al. Broadband optoelectronic synaptic devices based on silicon nanocrystals for neuromorphic computing [J]. Nano Energy, 2018, 52: 422-30.
[54] WANG Y, YIN L, HUANG S, et al. Silicon-nanomembrane-based broadband synaptic phototransistors for neuromorphic vision [J]. Nano Letters, 2023, 23(18): 8460-7.
[55] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306(5696): 666-9.
[56] CAO Y, FATEMI V, DEMIR A, et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices [J]. Nature, 2018, 556(7699): 80-4.
[57] CAO Y, FATEMI V, FANG S, et al. Unconventional superconductivity in magic-angle graphene superlattices [J]. Nature, 2018, 556(7699): 43-50.
[58] URI A, GROVER S, CAO Y, et al. Mapping the twist-angle disorder and Landau levels in magic-angle graphene [J]. Nature, 2020, 581(7806): 47-52.
[59] CAO Y, RODAN-LEGRAIN D, RUBIES-BIGORDA O, et al. Tunable correlated states and spin-polarized phases in twisted bilayer–bilayer graphene [J]. Nature, 2020, 583(7815): 215-20.
[60] LEE G-H, YU Y-J, CUI X, et al. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures [J]. ACS Nano, 2013, 7(9): 7931-6.
[61] YIN Z, LI H, LI H, et al. Single-layer MoS2 phototransistors [J]. ACS Nano, 2012, 6(1): 74-80.
[62] XUE F, HE X, RETAMAL J R D, et al. Gate-tunable and multidirection-switchable memristive phenomena in a van der waals ferroelectric [J]. Advanced Materials, 2019, 31(29): 1901300.
[63] SAMY O, ZENG S, BIROWOSUTO M D, et al. A review on MoS2 properties, synthesis, sensing applications and challenges [J]. Crystals, 2021, 11(4): 355.
[64] SHEN Y, ZHENG W, ZHU K, et al. Variability and yield in h‐BN‐based memristive circuits: the role of each type of defect [J]. Advanced Materials, 2021, 33(41): 2103656.
[65] PAN C, JI Y, XIAO N, et al. Coexistence of grain-boundaries-assisted bipolar and threshold resistive switching in multilayer hexagonal boron nitride [J]. Advanced Functional Materials, 2017, 27(10): 1604811.
[66] CHEN S, MAHMOODI M R, SHI Y, et al. Wafer-scale integration of two-dimensional materials in high-density memristive crossbar arrays for artificial neural networks [J]. Nature Electronics, 2020, 3(10): 638-45.
[67] MAO J Y, WU S, DING G, et al. A van der waals integrated damage-free memristor based on layered 2D hexagonal boron nitride [J]. Small, 2022, 18(12): 2106253.
[68] WANG M, CAI S, PAN C, et al. Robust memristors based on layered two-dimensional materials [J]. Nature Electronics, 2018, 1(2): 130-6.
[69] ZHU X, LI D, LIANG X, et al. Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing [J]. Nature Materials, 2019, 18(2): 141-8.
[70] RANGANATHAN K, FIEGENBAUM‐RAZ M, ISMACH A. Large‐Scale and robust multifunctional vertically aligned MoS2 photo‐memristors [J]. Advanced Functional Materials, 2020, 30(51): 2005718.
[71] HAO C, WEN F, XIANG J, et al. Liquid‐exfoliated black phosphorous nanosheet thin films for flexible resistive random access memory applications [J]. Advanced Functional Materials, 2016, 26(12): 2016-24.
[72] KUMAR D, LI H, DAS U K, et al. Flexible Solution‐processable black-phosphorus-based optoelectronic memristive synapses for neuromorphic computing and artificial visual perception applications [J]. Advanced Materials, 2023, 35(28): 2300446.
[73] MA H, FANG H, XIE X, et al. Optoelectronic synapses based on MXene/Violet Phosphorus van der waals heterojunctions for visual-olfactory crossmodal perception [J]. Nano-Micro Letters, 2024, 16(1): 1-15.
[74] ZENG J, FENG G, WU G, et al. Multisensory ferroelectric semiconductor synapse for neuromorphic computing [J]. Advanced Functional Materials, 2024: 2313010.
[75] YOON C, OH G, KIM S, et al. Implementation of threshold-and memory-switching memristors based on electrochemical metallization in an identical ferroelectric electrolyte [J]. NPG Asia Materials, 2023, 15(1): 33.
[76] YANG Y, GAO P, GABA S, et al. Observation of conducting filament growth in nanoscale resistive memories [J]. Nature Communications, 2012, 3(1): 732.
[77] YANG R, HUANG H M, HONG Q H, et al. Synaptic suppression triplet‐STDP learning rule realized in second-order memristors [J]. Advanced Functional Materials, 2018, 28(5): 1704455.
[78] RAO J, FAN Z, HONG L, et al. An electroforming-free, analog interface-type memristor based on a SrFeOx epitaxial heterojunction for neuromorphic computing [J]. Materials Today Physics, 2021, 18: 100392.
[79] CHA J-H, YANG S Y, OH J, et al. Conductive-bridging random-access memories for emerging neuromorphic computing [J]. Nanoscale, 2020, 12(27): 14339-68.
[80] REN Y, SUN R, CHEN S H Y, et al. Exploring Phase‐Change memory: from material systems to device physics [J]. Physica Status Solidi (RRL)–Rapid Research Letters, 2021, 15(3): 2000394.
[81] LIU Z-C, WANG L. Applications of phase change materials in electrical regime from conventional storage memory to novel neuromorphic computing [J]. IEEE Access, 2020, 8: 76471-99.
[82] ZHOU H, SORKIN V, CHEN S, et al. Design‐Dependent switching mechanisms of schottky‐barrier‐modulated memristors based on 2D semiconductor [J]. Advanced Electronic Materials, 2023, 9(6): 2201252.
[83] LECUN Y, BENGIO Y, HINTON G. Deep learning [J]. Nature, 2015, 521(7553): 436-44.
[84] ZHANG A, ZHOU H, LI X, et al. Fast and robust learning in spiking feed-forward neural networks based on intrinsic plasticity mechanism [J]. Neurocomputing, 2019, 365: 102-12.
[85] KANG T S, BANERJEE A. Learning feedforward and recurrent deterministic spiking neuron network feedback controllers [J]. arXiv preprint arXiv:170802603, 2017.
[86] ZUO W, ZHU Q, FU Y, et al. Volatile threshold switching memristor: An emerging enabler in the AIoT era [J]. Journal of Semiconductors, 2023, 44(5): 053102.
[87] PALMER L M, SHAI A S, REEVE J E, et al. NMDA spikes enhance action potential generation during sensory input [J]. Nature neuroscience, 2014, 17(3): 383-90.
[88] UJFALUSSY B B, MAKARA J K, LENGYEL M, et al. Global and multiplexed dendritic computations under in vivo-like conditions [J]. Neuron, 2018, 100(3): 579-92.
[89] YANG J J, STRUKKOV D B, STTEWART D R, et al. Memristive devices for computing [J]. Nature nanotechnology, 2013, 8(1): 13-24.
[90] YUAN R, TIW P J, CAI L, et al. A neuromorphic physiological signal processing system based on VO2 memristor for next-generation human-machine interface [J]. Nature Communications, 2023, 14(1): 3695.
[91] HUANG H M, YANG R, TAN Z H, et al. Quasi‐hodgkin‐huxley neurons with leaky integrate‐and‐fire functions physically realized with memristive devices [J]. Advanced Materials, 2019, 31(3): 1803849.
修改评论