题名 | Guest Editorial: AutoML for Nonstationary Data |
作者 | |
发表日期 | 2024-06-01
|
DOI | |
发表期刊 | |
ISSN | 2691-4581
|
卷号 | 5期号:6 |
摘要 | The five papers in this special section address different aspects of automated machine learning (AutoML) from fundamental algorithms to real-world applications. Developing high-performance machine learning models is a difficult task that usually requires expertise from data scientists and knowledge from domain experts. To make machine learning more accessible and ease the labor-intensive trial-and-error process of searching for the most appropriate machine learning algorithm and the optimal hyperparameter setting, AutoML was developed and has become a rapidly growing area in recent years. AutoML aims at automation and efficiency of the machine learning process across domains and applications. Nowadays, data is commonly collected over time and susceptible to changes, such as in Internet-of-Things (IoT) systems, mobile phone applications and healthcare data analysis. It poses new challenges to the traditional AutoML with the assumption of data stationarity. Interesting research questions arise around whether, when and how to effectively and efficiently deal with non-stationary data in AutoML. |
相关链接 | [IEEE记录] |
收录类别 | |
学校署名 | 第一
|
引用统计 | |
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/783786 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China 2.Computer Science Department, Instituto Nacional de Astrofísica, Óptica y Electrónica, Puebla, Mexico 3.4Paradigm Inc., Beijing, China 4.Leiden Institute of Advanced Computer Science (LIACS), Leiden University, Leiden, RA, The Netherlands 5.School of Computer Science, The University of Birmingham, Birmingham, U.K. 6.National Pilot School of Software, Yunnan University, Kunming, China |
第一作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Ran Cheng,Hugo Jair Escalante,Wei-Wei Tu,et al. Guest Editorial: AutoML for Nonstationary Data[J]. IEEE Transactions on Artificial Intelligence,2024,5(6).
|
APA |
Ran Cheng,Hugo Jair Escalante,Wei-Wei Tu,Jan N. Van Rijn,Shuo Wang,&Yun Yang.(2024).Guest Editorial: AutoML for Nonstationary Data.IEEE Transactions on Artificial Intelligence,5(6).
|
MLA |
Ran Cheng,et al."Guest Editorial: AutoML for Nonstationary Data".IEEE Transactions on Artificial Intelligence 5.6(2024).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论