中文版 | English
题名

Guest Editorial: AutoML for Nonstationary Data

作者
发表日期
2024-06-01
DOI
发表期刊
ISSN
2691-4581
卷号5期号:6
摘要
The five papers in this special section address different aspects of automated machine learning (AutoML) from fundamental algorithms to real-world applications. Developing high-performance machine learning models is a difficult task that usually requires expertise from data scientists and knowledge from domain experts. To make machine learning more accessible and ease the labor-intensive trial-and-error process of searching for the most appropriate machine learning algorithm and the optimal hyperparameter setting, AutoML was developed and has become a rapidly growing area in recent years. AutoML aims at automation and efficiency of the machine learning process across domains and applications. Nowadays, data is commonly collected over time and susceptible to changes, such as in Internet-of-Things (IoT) systems, mobile phone applications and healthcare data analysis. It poses new challenges to the traditional AutoML with the assumption of data stationarity. Interesting research questions arise around whether, when and how to effectively and efficiently deal with non-stationary data in AutoML.
相关链接[IEEE记录]
收录类别
学校署名
第一
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/783786
专题工学院_计算机科学与工程系
作者单位
1.Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
2.Computer Science Department, Instituto Nacional de Astrofísica, Óptica y Electrónica, Puebla, Mexico
3.4Paradigm Inc., Beijing, China
4.Leiden Institute of Advanced Computer Science (LIACS), Leiden University, Leiden, RA, The Netherlands
5.School of Computer Science, The University of Birmingham, Birmingham, U.K.
6.National Pilot School of Software, Yunnan University, Kunming, China
第一作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Ran Cheng,Hugo Jair Escalante,Wei-Wei Tu,et al. Guest Editorial: AutoML for Nonstationary Data[J]. IEEE Transactions on Artificial Intelligence,2024,5(6).
APA
Ran Cheng,Hugo Jair Escalante,Wei-Wei Tu,Jan N. Van Rijn,Shuo Wang,&Yun Yang.(2024).Guest Editorial: AutoML for Nonstationary Data.IEEE Transactions on Artificial Intelligence,5(6).
MLA
Ran Cheng,et al."Guest Editorial: AutoML for Nonstationary Data".IEEE Transactions on Artificial Intelligence 5.6(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Ran Cheng]的文章
[Hugo Jair Escalante]的文章
[Wei-Wei Tu]的文章
百度学术
百度学术中相似的文章
[Ran Cheng]的文章
[Hugo Jair Escalante]的文章
[Wei-Wei Tu]的文章
必应学术
必应学术中相似的文章
[Ran Cheng]的文章
[Hugo Jair Escalante]的文章
[Wei-Wei Tu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。