中文版 | English
题名

LASSO-Based Machine Learning Algorithm for Prediction of PICS Associated with Sepsis

作者
通讯作者Zhang, Zhongwei; Chen, Huaisheng
发表日期
2024
DOI
发表期刊
ISSN
1178-6973
卷号17
摘要
Introduction: This study aims to establish a comprehensive, multi -level approach for tackling tropical diseases by proactively anticipating and managing Persistent Inflammation, Immunosuppression, and Catabolism Syndrome (PICS) within the initial 14 days of Intensive Care Unit (ICU) admission. The primary objective is to amalgamate a diverse array of indicators and pathogenic microbial data to pinpoint pivotal predictive variables, enabling effective intervention specifically tailored to the context of tropical diseases. Methods: A focused analysis was conducted on 1733 patients admitted to the ICU between December 2016 and July 2019. Utilizing the Least Absolute Shrinkage and Selection Operator (LASSO) regression, disease severity and laboratory indices were scrutinized. The identified variables served as the foundation for constructing a predictive model designed to forecast the occurrence of PICS. Results: Among the subjects, 13.79% met the diagnostic criteria for PICS, correlating with a mortality rate of 38.08%. Key variables, including red -cell distribution width coefficient of variation (RDW-CV), hemofiltration (HF), mechanical ventilation (MV), Norepinephrine (NE), lactic acidosis, and multiple -drug resistant bacteria (MDR) infection, were identified through LASSO regression. The resulting predictive model exhibited a robust performance with an Area Under the Curve (AUC) of 0.828, an accuracy of 0.862, and a specificity of 0.977. Subsequent validation in an independent cohort yielded an AUC of 0.848. Discussion: The acquisition of RDW-CV, HF requirement, MV requirement, NE requirement, lactic acidosis, and MDR upon ICU admission emerges as a pivotal factor for prognosticating PICS onset in the context of tropical diseases. This study highlights the potential for significant improvements in clinical outcomes through the implementation of timely and targeted interventions tailored specifically to the challenges posed by tropical diseases.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
其他
资助项目
Natural Science Foundation of Guangdong Province[2024A1515012909] ; Guangzhou Municipal Science and Technology Bureau[2014A03J0643]
WOS研究方向
Infectious Diseases ; Pharmacology & Pharmacy
WOS类目
Infectious Diseases ; Pharmacology & Pharmacy
WOS记录号
WOS:001261072000001
出版者
来源库
Web of Science
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/783912
专题南方科技大学第一附属医院
作者单位
1.Jinan Univ, Clin Med Coll 2, Shenzhen, Guangdong, Peoples R China
2.Southern Univ Sci & Technol, Clin Med Coll 2, Shenzhen Peoples Hosp, Affiliated Hosp 1,Dept Crit Care Med,Jinan Univ, Shenzhen 518020, Guangdong, Peoples R China
3.Southern Univ Sci & Technol, Jinan Univ, Affiliated Hosp 1, Neurol Dept,Shenzhen Peoples Hosp,Clin Med Coll 2, Shenzhen, Guangdong, Peoples R China
4.Southern Univ Sci & Technol, Affiliated Hosp 1, Shenzhen Peoples Hosp, Clin Med Coll 2,Dept Clin Med Res Ctr,Jinan Univ, Shenzhen, Guangdong, Peoples R China
5.Southern Univ Sci & Technol, Shenzhen Peoples Hosp, Affiliated Hosp 1, Dept Clin Microbiol,Shenzhen Peoples Hosp,Clin Med, Shenzhen, Guangdong, Peoples R China
6.Sichuan Univ, West China Hosp, Dept Crit Care Med, Chengdu, Sichuan, Peoples R China
推荐引用方式
GB/T 7714
Hui, Kangping,Hong, Chengying,Xiong, Yihan,et al. LASSO-Based Machine Learning Algorithm for Prediction of PICS Associated with Sepsis[J]. INFECTION AND DRUG RESISTANCE,2024,17.
APA
Hui, Kangping.,Hong, Chengying.,Xiong, Yihan.,Xia, Jinquan.,Huang, Wei.,...&Chen, Huaisheng.(2024).LASSO-Based Machine Learning Algorithm for Prediction of PICS Associated with Sepsis.INFECTION AND DRUG RESISTANCE,17.
MLA
Hui, Kangping,et al."LASSO-Based Machine Learning Algorithm for Prediction of PICS Associated with Sepsis".INFECTION AND DRUG RESISTANCE 17(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Hui, Kangping]的文章
[Hong, Chengying]的文章
[Xiong, Yihan]的文章
百度学术
百度学术中相似的文章
[Hui, Kangping]的文章
[Hong, Chengying]的文章
[Xiong, Yihan]的文章
必应学术
必应学术中相似的文章
[Hui, Kangping]的文章
[Hong, Chengying]的文章
[Xiong, Yihan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。