中文版 | English
题名

Mixture to Mixture: Leveraging Close-Talk Mixtures as Weak-Supervision for Speech Separation

作者
通讯作者Wang, Zhong-Qiu
发表日期
2024
DOI
发表期刊
ISSN
1070-9908
EISSN
1558-2361
卷号31
摘要
We propose mixture to mixture (M2M) training, a weakly-supervised neural speech separation algorithm that leverages close-talk mixtures as a weak supervision for training discriminative models to separate far-field mixtures. Our idea is that, for a target speaker, its close-talk mixture has a much higher signal-to-noise ratio (SNR) of the target speaker than any far-field mixtures, and hence could be utilized to design a weak supervision for separation. To realize this, at each training step we feed a far-field mixture to a deep neural network (DNN) to produce an intermediate estimate for each speaker, and, for each of considered close-talk and far-field microphones, we linearly filter the DNN estimates and optimize a loss so that the filtered estimates of all the speakers can sum up to the mixture captured by each of the considered microphones. Evaluation results on a 2-speaker separation task in simulated reverberant conditions show that M2M can effectively leverage close-talk mixtures as a weak supervision for separating far-field mixtures.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
WOS研究方向
Engineering
WOS类目
Engineering, Electrical & Electronic
WOS记录号
WOS:001262728700003
出版者
ESI学科分类
ENGINEERING
来源库
Web of Science
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/786569
专题工学院_计算机科学与工程系
作者单位
Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen 518055, Peoples R China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Wang, Zhong-Qiu. Mixture to Mixture: Leveraging Close-Talk Mixtures as Weak-Supervision for Speech Separation[J]. IEEE SIGNAL PROCESSING LETTERS,2024,31.
APA
Wang, Zhong-Qiu.(2024).Mixture to Mixture: Leveraging Close-Talk Mixtures as Weak-Supervision for Speech Separation.IEEE SIGNAL PROCESSING LETTERS,31.
MLA
Wang, Zhong-Qiu."Mixture to Mixture: Leveraging Close-Talk Mixtures as Weak-Supervision for Speech Separation".IEEE SIGNAL PROCESSING LETTERS 31(2024).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Mixture_to_Mixture_L(603KB)期刊论文作者接受稿限制开放CC BY-NC-SA
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang, Zhong-Qiu]的文章
百度学术
百度学术中相似的文章
[Wang, Zhong-Qiu]的文章
必应学术
必应学术中相似的文章
[Wang, Zhong-Qiu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。