中文版 | English
题名

A cyclical route linking fundamental mechanism and AI algorithm: An example from tuning Poisson's ratio in amorphous networks

作者
通讯作者Shen, Xiangying; Xu, Lei
发表日期
2024-09-01
DOI
发表期刊
ISSN
1931-9401
卷号11期号:3
摘要
"AI for science" is widely recognized as a future trend in the development of scientific research. Currently, although machine learning algorithms have played a crucial role in scientific research with numerous successful cases, relatively few instances exist where AI assists researchers in uncovering the underlying physical mechanisms behind a certain phenomenon and subsequently using that mechanism to improve machine learning algorithms' efficiency. This article uses the investigation into the relationship between extreme Poisson's ratio values and the structure of amorphous networks as a case study to illustrate how machine learning methods can assist in revealing underlying physical mechanisms. Upon recognizing that the Poisson's ratio relies on the low-frequency vibrational modes of the dynamical matrix, we can then employ a convolutional neural network, trained on the dynamical matrix instead of traditional image recognition, to predict the Poisson's ratio of amorphous networks with a much higher efficiency. Through this example, we aim to showcase the role that artificial intelligence can play in revealing fundamental physical mechanisms, which subsequently improves the machine learning algorithms significantly.
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
NSFC[12205138] ; Shenzhen Science and Technology Innovation Committee (SZSTI)[JCYJ20220530113206015] ; null[NSFC-12074325] ; null[GRF-14307721] ; null[GRF-14306923] ; null[CRF-C6016-20G] ; null[CRF-C1018-17G] ; null[4053582] ; null[2024A1515030139]
WOS研究方向
Physics
WOS类目
Physics, Applied
WOS记录号
WOS:001262277700001
出版者
EI入藏号
20242816671790
EI主题词
Image recognition ; Learning algorithms ; Machine learning ; Poisson ratio
EI分类号
Artificial Intelligence:723.4 ; Machine Learning:723.4.2 ; Production Engineering:913.1 ; Materials Science:951
来源库
Web of Science
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/786591
专题理学院_物理系
工学院_材料科学与工程系
工学院_深港微电子学院
作者单位
1.Chinese Univ Hong Kong, Dept Phys, Hong Kong, Peoples R China
2.Chinese Univ Hong Kong, Shenzhen Res Inst, Shenzhen 518057, Peoples R China
3.Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Peoples R China
4.Univ Elect Sci & Technol China, Shenzhen Inst Adv Study, Shenzhen 518110, Peoples R China
5.Southern Univ Sci & Technol, Dept Mat Sci & Engn, Shenzhen 518055, Peoples R China
6.Southern Univ Sci & Technol, Sch Microelect, Shenzhen 518055, Peoples R China
7.Shenzhen Int Quantum Acad, Shenzhen 518048, Peoples R China
第一作者单位物理系
通讯作者单位物理系
推荐引用方式
GB/T 7714
Zhu, Changliang,Fang, Chenchao,Jin, Zhipeng,et al. A cyclical route linking fundamental mechanism and AI algorithm: An example from tuning Poisson's ratio in amorphous networks[J]. APPLIED PHYSICS REVIEWS,2024,11(3).
APA
Zhu, Changliang,Fang, Chenchao,Jin, Zhipeng,Li, Baowen,Shen, Xiangying,&Xu, Lei.(2024).A cyclical route linking fundamental mechanism and AI algorithm: An example from tuning Poisson's ratio in amorphous networks.APPLIED PHYSICS REVIEWS,11(3).
MLA
Zhu, Changliang,et al."A cyclical route linking fundamental mechanism and AI algorithm: An example from tuning Poisson's ratio in amorphous networks".APPLIED PHYSICS REVIEWS 11.3(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhu, Changliang]的文章
[Fang, Chenchao]的文章
[Jin, Zhipeng]的文章
百度学术
百度学术中相似的文章
[Zhu, Changliang]的文章
[Fang, Chenchao]的文章
[Jin, Zhipeng]的文章
必应学术
必应学术中相似的文章
[Zhu, Changliang]的文章
[Fang, Chenchao]的文章
[Jin, Zhipeng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。