题名 | A cyclical route linking fundamental mechanism and AI algorithm: An example from tuning Poisson's ratio in amorphous networks |
作者 | |
通讯作者 | Shen, Xiangying; Xu, Lei |
发表日期 | 2024-09-01
|
DOI | |
发表期刊 | |
ISSN | 1931-9401
|
卷号 | 11期号:3 |
摘要 | "AI for science" is widely recognized as a future trend in the development of scientific research. Currently, although machine learning algorithms have played a crucial role in scientific research with numerous successful cases, relatively few instances exist where AI assists researchers in uncovering the underlying physical mechanisms behind a certain phenomenon and subsequently using that mechanism to improve machine learning algorithms' efficiency. This article uses the investigation into the relationship between extreme Poisson's ratio values and the structure of amorphous networks as a case study to illustrate how machine learning methods can assist in revealing underlying physical mechanisms. Upon recognizing that the Poisson's ratio relies on the low-frequency vibrational modes of the dynamical matrix, we can then employ a convolutional neural network, trained on the dynamical matrix instead of traditional image recognition, to predict the Poisson's ratio of amorphous networks with a much higher efficiency. Through this example, we aim to showcase the role that artificial intelligence can play in revealing fundamental physical mechanisms, which subsequently improves the machine learning algorithms significantly. |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
资助项目 | NSFC[12205138]
; Shenzhen Science and Technology Innovation Committee (SZSTI)[JCYJ20220530113206015]
; null[NSFC-12074325]
; null[GRF-14307721]
; null[GRF-14306923]
; null[CRF-C6016-20G]
; null[CRF-C1018-17G]
; null[4053582]
; null[2024A1515030139]
|
WOS研究方向 | Physics
|
WOS类目 | Physics, Applied
|
WOS记录号 | WOS:001262277700001
|
出版者 | |
EI入藏号 | 20242816671790
|
EI主题词 | Image recognition
; Learning algorithms
; Machine learning
; Poisson ratio
|
EI分类号 | Artificial Intelligence:723.4
; Machine Learning:723.4.2
; Production Engineering:913.1
; Materials Science:951
|
来源库 | Web of Science
|
引用统计 | |
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/786591 |
专题 | 理学院_物理系 工学院_材料科学与工程系 工学院_深港微电子学院 |
作者单位 | 1.Chinese Univ Hong Kong, Dept Phys, Hong Kong, Peoples R China 2.Chinese Univ Hong Kong, Shenzhen Res Inst, Shenzhen 518057, Peoples R China 3.Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Peoples R China 4.Univ Elect Sci & Technol China, Shenzhen Inst Adv Study, Shenzhen 518110, Peoples R China 5.Southern Univ Sci & Technol, Dept Mat Sci & Engn, Shenzhen 518055, Peoples R China 6.Southern Univ Sci & Technol, Sch Microelect, Shenzhen 518055, Peoples R China 7.Shenzhen Int Quantum Acad, Shenzhen 518048, Peoples R China |
第一作者单位 | 物理系 |
通讯作者单位 | 物理系 |
推荐引用方式 GB/T 7714 |
Zhu, Changliang,Fang, Chenchao,Jin, Zhipeng,et al. A cyclical route linking fundamental mechanism and AI algorithm: An example from tuning Poisson's ratio in amorphous networks[J]. APPLIED PHYSICS REVIEWS,2024,11(3).
|
APA |
Zhu, Changliang,Fang, Chenchao,Jin, Zhipeng,Li, Baowen,Shen, Xiangying,&Xu, Lei.(2024).A cyclical route linking fundamental mechanism and AI algorithm: An example from tuning Poisson's ratio in amorphous networks.APPLIED PHYSICS REVIEWS,11(3).
|
MLA |
Zhu, Changliang,et al."A cyclical route linking fundamental mechanism and AI algorithm: An example from tuning Poisson's ratio in amorphous networks".APPLIED PHYSICS REVIEWS 11.3(2024).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论