中文版 | English
题名

Plasma immune profiling combined with machine learning contributes to diagnosis and prognosis of active pulmonary tuberculosis

作者
通讯作者Zhang, Guoliang
发表日期
2024-12-31
DOI
发表期刊
EISSN
2222-1751
卷号13期号:1
摘要
Tuberculosis (TB) remains one of the deadliest chronic infectious diseases globally. Early diagnosis not only prevents the spread of TB but also ensures effective treatment. However, the absence of non-sputum-based diagnostic tests often leads to delayed TB diagnoses. Inflammation is a hallmark of TB, we aimed to identify biomarkers associated with TB based on immune profiling. We collected 222 plasma samples from healthy controls (HCs), disease controls (non-TB pneumonia; PN), patients with TB (TB), and cured TB cases (RxTB). A high-throughput protein detection technology, multiplex proximity extension assays (PEA), was applied to measure the levels of 92 immune proteins. Based on differential analysis and the correlation with TB severity, we selected 9 biomarkers (CXCL9, PDL1, CDCP1, CCL28, CCL23, CCL19, MMP1, IFN gamma and TRANCE) and explored their diagnostic capabilities through 7 machine learning methods. We identified combination of these 9 biomarkers that distinguish TB cases from controls with an area under the receiver operating characteristic curve (AUROC) of 0.89-0.99, with a sensitivity of 82-93% at a specificity of 88-92%. Moreover, the model excels in distinguishing severe TB cases, achieving AUROC exceeding 0.95, sensitivities and specificities exceeding 93.3%. In summary, utilizing targeted proteomics and machine learning, we identified a 9 plasma proteins signature that demonstrates significant potential for accurate TB diagnosis and clinical outcome prediction.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
第一 ; 通讯
资助项目
National Natural Science Foundation of China[82170009] ; National Key Research and Development Plan[2021YFA1300902] ; Guangdong Science Fund for Distinguished Young Scholars[0620220214] ; State Key Laboratory of Respiratory Diseases Open Project[SKLRD-OP-202324] ; Shenzhen Scientific and Technological Foundation["KCXFZ20211020163545004","RCJC20221008092726022"]
WOS研究方向
Immunology ; Infectious Diseases ; Microbiology
WOS类目
Immunology ; Infectious Diseases ; Microbiology
WOS记录号
WOS:001262151600001
出版者
来源库
Web of Science
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/786688
专题南方科技大学第二附属医院
南方科技大学第一附属医院
作者单位
1.Southern Univ Sci & Technol, Shenzhen Peoples Hosp 3, Natl Clin Res Ctr Infect Dis, Shenzhen 518112, Peoples R China
2.Shenzhen Univ, Baoan Peoples Hosp Shenzhen, Affiliated Hosp 2, Shenzhen, Peoples R China
3.iCarbonX, Zhuhai ICXIVD Biotechnol Co Ltd, Zhuhai, Peoples R China
第一作者单位南方科技大学第二附属医院;  南方科技大学第一附属医院
通讯作者单位南方科技大学第二附属医院;  南方科技大学第一附属医院
第一作者的第一单位南方科技大学第二附属医院;  南方科技大学第一附属医院
推荐引用方式
GB/T 7714
Yao, Fusheng,Zhang, Ruiqi,Lin, Qiao,et al. Plasma immune profiling combined with machine learning contributes to diagnosis and prognosis of active pulmonary tuberculosis[J]. EMERGING MICROBES & INFECTIONS,2024,13(1).
APA
Yao, Fusheng.,Zhang, Ruiqi.,Lin, Qiao.,Xu, Hui.,Li, Wei.,...&Zhang, Guoliang.(2024).Plasma immune profiling combined with machine learning contributes to diagnosis and prognosis of active pulmonary tuberculosis.EMERGING MICROBES & INFECTIONS,13(1).
MLA
Yao, Fusheng,et al."Plasma immune profiling combined with machine learning contributes to diagnosis and prognosis of active pulmonary tuberculosis".EMERGING MICROBES & INFECTIONS 13.1(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yao, Fusheng]的文章
[Zhang, Ruiqi]的文章
[Lin, Qiao]的文章
百度学术
百度学术中相似的文章
[Yao, Fusheng]的文章
[Zhang, Ruiqi]的文章
[Lin, Qiao]的文章
必应学术
必应学术中相似的文章
[Yao, Fusheng]的文章
[Zhang, Ruiqi]的文章
[Lin, Qiao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。