题名 | Plasma immune profiling combined with machine learning contributes to diagnosis and prognosis of active pulmonary tuberculosis |
作者 | |
通讯作者 | Zhang, Guoliang |
发表日期 | 2024-12-31
|
DOI | |
发表期刊 | |
EISSN | 2222-1751
|
卷号 | 13期号:1 |
摘要 | Tuberculosis (TB) remains one of the deadliest chronic infectious diseases globally. Early diagnosis not only prevents the spread of TB but also ensures effective treatment. However, the absence of non-sputum-based diagnostic tests often leads to delayed TB diagnoses. Inflammation is a hallmark of TB, we aimed to identify biomarkers associated with TB based on immune profiling. We collected 222 plasma samples from healthy controls (HCs), disease controls (non-TB pneumonia; PN), patients with TB (TB), and cured TB cases (RxTB). A high-throughput protein detection technology, multiplex proximity extension assays (PEA), was applied to measure the levels of 92 immune proteins. Based on differential analysis and the correlation with TB severity, we selected 9 biomarkers (CXCL9, PDL1, CDCP1, CCL28, CCL23, CCL19, MMP1, IFN gamma and TRANCE) and explored their diagnostic capabilities through 7 machine learning methods. We identified combination of these 9 biomarkers that distinguish TB cases from controls with an area under the receiver operating characteristic curve (AUROC) of 0.89-0.99, with a sensitivity of 82-93% at a specificity of 88-92%. Moreover, the model excels in distinguishing severe TB cases, achieving AUROC exceeding 0.95, sensitivities and specificities exceeding 93.3%. In summary, utilizing targeted proteomics and machine learning, we identified a 9 plasma proteins signature that demonstrates significant potential for accurate TB diagnosis and clinical outcome prediction. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | National Natural Science Foundation of China[82170009]
; National Key Research and Development Plan[2021YFA1300902]
; Guangdong Science Fund for Distinguished Young Scholars[0620220214]
; State Key Laboratory of Respiratory Diseases Open Project[SKLRD-OP-202324]
; Shenzhen Scientific and Technological Foundation["KCXFZ20211020163545004","RCJC20221008092726022"]
|
WOS研究方向 | Immunology
; Infectious Diseases
; Microbiology
|
WOS类目 | Immunology
; Infectious Diseases
; Microbiology
|
WOS记录号 | WOS:001262151600001
|
出版者 | |
来源库 | Web of Science
|
引用统计 | |
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/786688 |
专题 | 南方科技大学第二附属医院 南方科技大学第一附属医院 |
作者单位 | 1.Southern Univ Sci & Technol, Shenzhen Peoples Hosp 3, Natl Clin Res Ctr Infect Dis, Shenzhen 518112, Peoples R China 2.Shenzhen Univ, Baoan Peoples Hosp Shenzhen, Affiliated Hosp 2, Shenzhen, Peoples R China 3.iCarbonX, Zhuhai ICXIVD Biotechnol Co Ltd, Zhuhai, Peoples R China |
第一作者单位 | 南方科技大学第二附属医院; 南方科技大学第一附属医院 |
通讯作者单位 | 南方科技大学第二附属医院; 南方科技大学第一附属医院 |
第一作者的第一单位 | 南方科技大学第二附属医院; 南方科技大学第一附属医院 |
推荐引用方式 GB/T 7714 |
Yao, Fusheng,Zhang, Ruiqi,Lin, Qiao,et al. Plasma immune profiling combined with machine learning contributes to diagnosis and prognosis of active pulmonary tuberculosis[J]. EMERGING MICROBES & INFECTIONS,2024,13(1).
|
APA |
Yao, Fusheng.,Zhang, Ruiqi.,Lin, Qiao.,Xu, Hui.,Li, Wei.,...&Zhang, Guoliang.(2024).Plasma immune profiling combined with machine learning contributes to diagnosis and prognosis of active pulmonary tuberculosis.EMERGING MICROBES & INFECTIONS,13(1).
|
MLA |
Yao, Fusheng,et al."Plasma immune profiling combined with machine learning contributes to diagnosis and prognosis of active pulmonary tuberculosis".EMERGING MICROBES & INFECTIONS 13.1(2024).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论