中文版 | English
题名

Graph Attentive Dual Ensemble learning for Unsupervised Domain Adaptation on point clouds

作者
通讯作者Peng, Xiaojiang
发表日期
2024-11-01
DOI
发表期刊
ISSN
0031-3203
EISSN
1873-5142
卷号155
摘要
Due to the annotation difficulty of point clouds, Unsupervised Domain Adaptation (UDA) is a promising direction to address unlabeled point cloud classification and segmentation. Recent works show that adding a self -supervised learning branch for target domain training consistently boosts UDA point cloud tasks. However, most of these works simply resort to geometric deformation, which ignores semantic information and is hard to bridge the domain gap. In this paper, we propose a novel self -learning strategy for UDA on point clouds, termed as Graph Attentive Dual Ensemble learning (GRADE), which delivers semantic information directly. Specifically, with a pre -training process on the source domain, GRADE further builds dual collaborative training branches on the target domain, where each of them constructs a temporal average teacher model and distills its pseudo labels to the other branch. To achieve faithful labels from each teacher model, we improve the popular DGCNN architecture by introducing a dynamic graph attentive module to mine the relation between local neighborhood points. We conduct extensive experiments on several UDA point cloud benchmarks, and the results demonstrate that our GRADE method outperforms the state-of-the-art methods on both classification and segmentation tasks with clear margins.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
Shenzhen Technology University School-Level Research Project[20231063010070] ; National Natural Science Foundation of China[62261160654] ; Stable Support Projects for Shenzhen Higher Education Institutions[20220718110 918001] ; Natural Science Foundation of Top Talent of SZTU[GD RC202131]
WOS研究方向
Computer Science ; Engineering
WOS类目
Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号
WOS:001260836300001
出版者
EI入藏号
20242616423272
EI主题词
Personnel training ; Semantics
EI分类号
Personnel:912.4
ESI学科分类
ENGINEERING
来源库
Web of Science
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/786766
专题工学院_计算机科学与工程系
作者单位
1.Shenzhen Technol Univ, Coll Big data & Internet, Shenzhen 518118, Peoples R China
2.Southern Univ Sci & Technol, Sch Comp Sci & Engn, Shenzhen 518055, Guangdong, Peoples R China
3.George Mason Univ, Comp Sci & Engn, Fairfax, VA USA
4.Natl Univ Def Technol, Coll Elect Sci & Technol, Changsha, Peoples R China
第一作者单位计算机科学与工程系
推荐引用方式
GB/T 7714
Li, Qing,Yan, Chuan,Hao, Qi,et al. Graph Attentive Dual Ensemble learning for Unsupervised Domain Adaptation on point clouds[J]. PATTERN RECOGNITION,2024,155.
APA
Li, Qing,Yan, Chuan,Hao, Qi,Peng, Xiaojiang,&Liu, Li.(2024).Graph Attentive Dual Ensemble learning for Unsupervised Domain Adaptation on point clouds.PATTERN RECOGNITION,155.
MLA
Li, Qing,et al."Graph Attentive Dual Ensemble learning for Unsupervised Domain Adaptation on point clouds".PATTERN RECOGNITION 155(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Li, Qing]的文章
[Yan, Chuan]的文章
[Hao, Qi]的文章
百度学术
百度学术中相似的文章
[Li, Qing]的文章
[Yan, Chuan]的文章
[Hao, Qi]的文章
必应学术
必应学术中相似的文章
[Li, Qing]的文章
[Yan, Chuan]的文章
[Hao, Qi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。