中文版 | English
题名

Gas identification using electronic nose via gramian-angular-field-based image conversion and convolutional neural networks architecture search

作者
通讯作者Zeng, Min; Yang, Zhi
发表日期
2024-10-15
DOI
发表期刊
EISSN
0925-4005
卷号417
摘要
Recent years have witnessed the splendid performance of deep learning methods used in gas recognition for electronic noses (E-nose). In addition to effective feature extraction, the architecture of the deep neural network plays a vital role. Currently, most applied network structures are hand-crafted by human experts, which is timeconsuming and problem-dependent, making it necessary to design the structures of neural networks according to specific demands. In this work, a genetic algorithm with particle swarm optimization (GA-PSO), which possesses promising optimization capabilities, is applied to search for effective deep convolutional neural networks (CNNs) for gas classification based on E-nose technology. A novel image transformation strategy using Gramian angular field and a hybrid cost-saving method is employed in the search process, enabling adaptive and efficient CNN search on gas datasets. With the proposed methods, we can achieve an average classification accuracy of over 90 % on two public gas datasets, while also significantly reducing the model size compared to state-of-the-art CNNs. By using these novel strategies, our approach surpasses random search and basic PSO algorithm in achieving the global optimal solution, higher and more stable accuracy, and faster convergence in pattern recognition using E-nose. Our work suggests that the proposed method can quickly identify excellent CNN structures for E-nose applications.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
National Key Research and Development Program of China[2022YFC3104700] ; National Natural Science Foundation of China["62371299","62301314","62101329"] ; China Postdoctoral Science Foundation[2023M732198] ; Natural Science Foundation of Shanghai[23ZR1430100]
WOS研究方向
Chemistry ; Electrochemistry ; Instruments & Instrumentation
WOS类目
Chemistry, Analytical ; Electrochemistry ; Instruments & Instrumentation
WOS记录号
WOS:001264859000001
出版者
EI入藏号
20242716616417
EI主题词
Classification (of information) ; Convolution ; Convolutional neural networks ; Deep neural networks ; Gas detectors ; Gases ; Genetic algorithms ; Image processing ; Learning systems ; Network architecture ; Particle swarm optimization (PSO)
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Information Theory and Signal Processing:716.1 ; Computer Software, Data Handling and Applications:723 ; Data Processing and Image Processing:723.2 ; Chemistry:801 ; Information Sources and Analysis:903.1 ; Accidents and Accident Prevention:914.1 ; Optimization Techniques:921.5 ; Electric and Electronic Instruments:942.1 ; Special Purpose Instruments:943.3
ESI学科分类
CHEMISTRY
来源库
Web of Science
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/786909
专题工学院_海洋科学与工程系
作者单位
1.Shanghai Jiao Tong Univ, Natl Key Lab Adv Micro & Nano Manufacture Technol, Shanghai 200240, Peoples R China
2.Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, Dept Micro Nano Elect, Shanghai 200240, Peoples R China
3.Southern Univ Sci & Technol, Dept Ocean Sci & Engn, Shenzhen 518055, Peoples R China
4.Shanghai Qibao Dwight High Sch, Shanghai 201101, Peoples R China
推荐引用方式
GB/T 7714
Zhu, Yudi,Wang, Tao,Li, Zhuoheng,et al. Gas identification using electronic nose via gramian-angular-field-based image conversion and convolutional neural networks architecture search[J]. SENSORS AND ACTUATORS B-CHEMICAL,2024,417.
APA
Zhu, Yudi.,Wang, Tao.,Li, Zhuoheng.,Ni, Wangze.,Zhang, Kai.,...&Yang, Zhi.(2024).Gas identification using electronic nose via gramian-angular-field-based image conversion and convolutional neural networks architecture search.SENSORS AND ACTUATORS B-CHEMICAL,417.
MLA
Zhu, Yudi,et al."Gas identification using electronic nose via gramian-angular-field-based image conversion and convolutional neural networks architecture search".SENSORS AND ACTUATORS B-CHEMICAL 417(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhu, Yudi]的文章
[Wang, Tao]的文章
[Li, Zhuoheng]的文章
百度学术
百度学术中相似的文章
[Zhu, Yudi]的文章
[Wang, Tao]的文章
[Li, Zhuoheng]的文章
必应学术
必应学术中相似的文章
[Zhu, Yudi]的文章
[Wang, Tao]的文章
[Li, Zhuoheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。