中文版 | English
题名

Anomaly detection using isomorphic analysis for false data injection attacks in industrial control systems

作者
通讯作者Yang, Shuang-Hua
发表日期
2024-09-01
DOI
发表期刊
ISSN
0016-0032
EISSN
1879-2693
卷号361期号:13
摘要
As the Industrial Internet-of-Things (IIoT) evolves, a growing number of industrial control systems (ICSs) are connecting to the Internet, making them more vulnerable to malicious attacks. This paper addresses the detection of false data injection (FDI) attacks, a prevalent threat to open ICSs. We introduce an innovative anomaly detection technique using isomorphic analysis to safeguard ICSs against FDI attacks. Isomorphic analysis involves comparing transmitted signals with their expected values, which are derived from mathematical models or isomorphic components. For a comprehensive defense mechanism, we incorporate three specific detectors: the control signal detector, the actuating signal detector, and the sensor reading detector. Designed to detect FDI attacks across various parts of the ICS, these detectors ensure the integrity of all transmitted signals throughout the physical control system. While the control signal detector adopts a threshold method, the other two rely on statistical approaches. If an attack is detected, the detectors can correct tampered signals before they reach downstream components, enhancing the system's overall resilience and fault tolerance. The effectiveness of these detectors is supported by rigorous mathematical proofs. Moreover, our experimental findings further reveal the superiority of the isomorphic strategy over prior work in terms of detection rate, detection time delay, and system resilience.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
National Natural Science Foundation of China["92067109","61873119","62211530106"] ; Shenzhen Science and Technology Program, China["ZDSYS20210623092007023","GJHZ20210705141808024"] ; Educational Commission of Guangdong Province, China[2019KZDZX1018] ; UGC General Research Fund from Hong Kong["17203320","17209822"]
WOS研究方向
Automation & Control Systems ; Engineering ; Mathematics
WOS类目
Automation & Control Systems ; Engineering, Multidisciplinary ; Engineering, Electrical & Electronic ; Mathematics, Interdisciplinary Applications
WOS记录号
WOS:001265936300001
出版者
EI入藏号
20242716647686
EI主题词
Delay control systems ; Fault tolerance ; Network security ; Signal detection
EI分类号
Information Theory and Signal Processing:716.1 ; Computer Software, Data Handling and Applications:723 ; Control Systems:731.1
ESI学科分类
ENGINEERING
来源库
Web of Science
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/786922
专题工学院_计算机科学与工程系
南方科技大学
作者单位
1.Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Peoples R China
2.Southern Univ Sci & Technol, Shenzhen Key Lab Safety & Secur Next Generat Ind I, Shenzhen, Peoples R China
3.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen, Peoples R China
4.Univ Reading, Dept Comp Sci, Reading, England
第一作者单位南方科技大学;  计算机科学与工程系
通讯作者单位南方科技大学;  计算机科学与工程系
推荐引用方式
GB/T 7714
Zhang, Xinchen,Jiang, Zhihan,Ding, Yulong,et al. Anomaly detection using isomorphic analysis for false data injection attacks in industrial control systems[J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS,2024,361(13).
APA
Zhang, Xinchen,Jiang, Zhihan,Ding, Yulong,Ngai, Edith C. H.,&Yang, Shuang-Hua.(2024).Anomaly detection using isomorphic analysis for false data injection attacks in industrial control systems.JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS,361(13).
MLA
Zhang, Xinchen,et al."Anomaly detection using isomorphic analysis for false data injection attacks in industrial control systems".JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS 361.13(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang, Xinchen]的文章
[Jiang, Zhihan]的文章
[Ding, Yulong]的文章
百度学术
百度学术中相似的文章
[Zhang, Xinchen]的文章
[Jiang, Zhihan]的文章
[Ding, Yulong]的文章
必应学术
必应学术中相似的文章
[Zhang, Xinchen]的文章
[Jiang, Zhihan]的文章
[Ding, Yulong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。