题名 | Anomaly detection using isomorphic analysis for false data injection attacks in industrial control systems |
作者 | |
通讯作者 | Yang, Shuang-Hua |
发表日期 | 2024-09-01
|
DOI | |
发表期刊 | |
ISSN | 0016-0032
|
EISSN | 1879-2693
|
卷号 | 361期号:13 |
摘要 | As the Industrial Internet-of-Things (IIoT) evolves, a growing number of industrial control systems (ICSs) are connecting to the Internet, making them more vulnerable to malicious attacks. This paper addresses the detection of false data injection (FDI) attacks, a prevalent threat to open ICSs. We introduce an innovative anomaly detection technique using isomorphic analysis to safeguard ICSs against FDI attacks. Isomorphic analysis involves comparing transmitted signals with their expected values, which are derived from mathematical models or isomorphic components. For a comprehensive defense mechanism, we incorporate three specific detectors: the control signal detector, the actuating signal detector, and the sensor reading detector. Designed to detect FDI attacks across various parts of the ICS, these detectors ensure the integrity of all transmitted signals throughout the physical control system. While the control signal detector adopts a threshold method, the other two rely on statistical approaches. If an attack is detected, the detectors can correct tampered signals before they reach downstream components, enhancing the system's overall resilience and fault tolerance. The effectiveness of these detectors is supported by rigorous mathematical proofs. Moreover, our experimental findings further reveal the superiority of the isomorphic strategy over prior work in terms of detection rate, detection time delay, and system resilience. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
资助项目 | National Natural Science Foundation of China["92067109","61873119","62211530106"]
; Shenzhen Science and Technology Program, China["ZDSYS20210623092007023","GJHZ20210705141808024"]
; Educational Commission of Guangdong Province, China[2019KZDZX1018]
; UGC General Research Fund from Hong Kong["17203320","17209822"]
|
WOS研究方向 | Automation & Control Systems
; Engineering
; Mathematics
|
WOS类目 | Automation & Control Systems
; Engineering, Multidisciplinary
; Engineering, Electrical & Electronic
; Mathematics, Interdisciplinary Applications
|
WOS记录号 | WOS:001265936300001
|
出版者 | |
EI入藏号 | 20242716647686
|
EI主题词 | Delay control systems
; Fault tolerance
; Network security
; Signal detection
|
EI分类号 | Information Theory and Signal Processing:716.1
; Computer Software, Data Handling and Applications:723
; Control Systems:731.1
|
ESI学科分类 | ENGINEERING
|
来源库 | Web of Science
|
引用统计 | |
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/786922 |
专题 | 工学院_计算机科学与工程系 南方科技大学 |
作者单位 | 1.Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Peoples R China 2.Southern Univ Sci & Technol, Shenzhen Key Lab Safety & Secur Next Generat Ind I, Shenzhen, Peoples R China 3.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen, Peoples R China 4.Univ Reading, Dept Comp Sci, Reading, England |
第一作者单位 | 南方科技大学; 计算机科学与工程系 |
通讯作者单位 | 南方科技大学; 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Zhang, Xinchen,Jiang, Zhihan,Ding, Yulong,et al. Anomaly detection using isomorphic analysis for false data injection attacks in industrial control systems[J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS,2024,361(13).
|
APA |
Zhang, Xinchen,Jiang, Zhihan,Ding, Yulong,Ngai, Edith C. H.,&Yang, Shuang-Hua.(2024).Anomaly detection using isomorphic analysis for false data injection attacks in industrial control systems.JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS,361(13).
|
MLA |
Zhang, Xinchen,et al."Anomaly detection using isomorphic analysis for false data injection attacks in industrial control systems".JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS 361.13(2024).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论