题名 | Unlocking the Catalytic Potential of Platinum Single Atoms for Industry-Level Current Density Chlorine Tolerance Hydrogen Generation |
作者 | |
通讯作者 | Wang, Chundong |
发表日期 | 2024-07-01
|
DOI | |
发表期刊 | |
ISSN | 1616-301X
|
EISSN | 1616-3028
|
摘要 | ["Immobilizing platinum (Pt) single atoms on appropriate supports with optimized coordination environments and electronic structures is a promising strategy to address the problem of chlorine corrosion during seawater electrolysis. Herein, Pt single atoms on nickel-vanadium layered double hydroxides (Pt-SA/NiV-LDH) matrix are fabricated for chlorine tolerance hydrogen generation. Due to the strong synergetic electronic interaction between atomically dispersed Pt and the ultrathin NiV LDH matrix, the adsorption/dissociation feature of *H2O, *OH, and *H are optimized as evidenced theoretically. The as-fabricated Pt-SA/NiV-LDH electrode exhibits an exceptional mass activity (i.e., 30.98 times higher) compared to the commercial Pt/C, along with an ultra-high turnover frequency (TOF) value of 9.90 s-1 in alkaline media. Impressively, only 207 mV overpotential is required to yield a current density of 2000 mA cm-2 in an electrolyte solution containing 1 m KOH and 2 M NaCl, indicating its robust resistance to chlorine. Moreover, this kind of material demonstrates remarkably low overpotentials of 130 and 215 mV to attain the industrial-scale current densities of 1000 and 2000 mA cm-2 in alkaline seawater, accompanied by exceptional stability for 500 h working at 500 mA cm-2. This work provides an insightful reference for the production of sustainable green hydrogen through seawater electrolysis.","The self-supported Pt-SA/NiV-LDH nanosheets optimize both the electrochemical surface area and electron/mass transport channels, allowing to slow down the deposition of ions such as Cl-, Ca2+ and Mg2+. The optimized adsorption/dissociation feature of H2O, *OH, and *H enables the catalysts to address remarkable alkaline HER and seawater electrolysis activity at ampere-level current densities. image"] |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
资助项目 | National Natural Science Foundation of China["52272202","51972129","51702150","21725102"]
; Chang Gung University[URRPD2N0031]
; Open Project of Yunnan Precious Metals Laboratory Co., Ltd.[YPML-2023050259]
; Yunnan Basic Applied Research Project[202401AT070460]
; Science Department of Yunnan Provincial Eduction Authority[2024J0014]
|
WOS研究方向 | Chemistry
; Science & Technology - Other Topics
; Materials Science
; Physics
|
WOS类目 | Chemistry, Multidisciplinary
; Chemistry, Physical
; Nanoscience & Nanotechnology
; Materials Science, Multidisciplinary
; Physics, Applied
; Physics, Condensed Matter
|
WOS记录号 | WOS:001263130800001
|
出版者 | |
ESI学科分类 | MATERIALS SCIENCE
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:1
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/786996 |
专题 | 公共分析测试中心 |
作者单位 | 1.Huazhong Univ Sci & Technol, Sch Integrated Circuits, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China 2.Yunnan Univ, Natl Ctr Int Res Photoelect & Energy Mat, Sch Mat & Energy, Yunnan Key Lab Micro Nano Mat & Technol, Kunming 650091, Peoples R China 3.Chang Gung Univ, Ctr Reliabil Sci & Technol, Taoyuan 33302, Taiwan 4.Chang Gung Univ, Ctr Sustainabil & Energy Tecnhol, Taoyuan 33302, Taiwan 5.Prince Sultan Univ, Coll Humanities & Sci, Energy Water & Environm Lab, Riyadh 11586, Saudi Arabia 6.Southern Univ Sci & Technol, Pico Ctr, SUSTech Core Res Facil, Shenzhen 518055, Peoples R China 7.Shihezi Univ, Coll Sci, Dept Phys, Shihezi 832003, Xinjiang, Peoples R China 8.Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China |
推荐引用方式 GB/T 7714 |
Sun, Huachuan,Chen, Hsiao-Chien,Humayun, Muhammad,et al. Unlocking the Catalytic Potential of Platinum Single Atoms for Industry-Level Current Density Chlorine Tolerance Hydrogen Generation[J]. ADVANCED FUNCTIONAL MATERIALS,2024.
|
APA |
Sun, Huachuan.,Chen, Hsiao-Chien.,Humayun, Muhammad.,Qiu, Yang.,Ju, Jun.,...&Wang, Chundong.(2024).Unlocking the Catalytic Potential of Platinum Single Atoms for Industry-Level Current Density Chlorine Tolerance Hydrogen Generation.ADVANCED FUNCTIONAL MATERIALS.
|
MLA |
Sun, Huachuan,et al."Unlocking the Catalytic Potential of Platinum Single Atoms for Industry-Level Current Density Chlorine Tolerance Hydrogen Generation".ADVANCED FUNCTIONAL MATERIALS (2024).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论