中文版 | English
题名

Hyper-relational knowledge graph neural network for next POI recommendation

作者
通讯作者Jiang, Renhe; Fan, Zipei; Song, Xuan
发表日期
2024-07-01
DOI
发表期刊
ISSN
1386-145X
EISSN
1573-1413
卷号27期号:4
摘要
With the advancement of mobile technology, Point of Interest (POI) recommendation systems in Location-based Social Networks (LBSN) have brought numerous benefits to both users and companies. Many existing works employ Knowledge Graph (KG) to alleviate the data sparsity issue in LBSN. These approaches primarily focus on modeling the pair-wise relations in LBSN to enrich the semantics and thereby relieve the data sparsity issue. However, existing approaches seldom consider the hyper-relations in LBSN, such as the mobility relation (a 3-ary relation: user-POI-time). This makes the model hard to exploit the semantics accurately. In addition, prior works overlook the rich structural information inherent in KG, which consists of higher-order relations and can further alleviate the impact of data sparsity.To this end, we propose a Hyper-Relational Knowledge Graph Neural Network (HKGNN) model. In HKGNN, a Hyper-Relational Knowledge Graph (HKG) that models the LBSN data is constructed to maintain and exploit the rich semantics of hyper-relations. Then we proposed a Hypergraph Neural Network to utilize the structural information of HKG in a cohesive way. In addition, a self-attention network is used to leverage sequential information and make personalized recommendations. Furthermore, side information, essential in reducing data sparsity by providing background knowledge of POIs, is not fully utilized in current methods. In light of this, we extended the current dataset with available side information to further lessen the impact of data sparsity. Results of experiments on four real-world LBSN datasets demonstrate the effectiveness of our approach compared to existing state-of-the-art methods. Our implementation is available at https://github.com/aeroplanepaper/HKG.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一
WOS研究方向
Computer Science
WOS类目
Computer Science, Information Systems ; Computer Science, Software Engineering
WOS记录号
WOS:001263395100001
出版者
EI入藏号
20242816675012
EI主题词
Graph neural networks ; Knowledge graph ; Semantics ; Social sciences computing ; User profile
EI分类号
Data Processing and Image Processing:723.2 ; Artificial Intelligence:723.4 ; Computer Applications:723.5
ESI学科分类
COMPUTER SCIENCE
来源库
Web of Science
引用统计
被引频次[WOS]:2
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/787027
专题工学院_计算机科学与工程系
作者单位
1.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen, Peoples R China
2.Univ Amsterdam, Amsterdam, Netherlands
3.Univ Tokyo, Ctr Spatial Informat Sci, Tokyo, Japan
4.Jilin Univ, Sch Artificial Intelligence, Changchun, Peoples R China
第一作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Zhang, Jixiao,Li, Yongkang,Zou, Ruotong,et al. Hyper-relational knowledge graph neural network for next POI recommendation[J]. WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS,2024,27(4).
APA
Zhang, Jixiao.,Li, Yongkang.,Zou, Ruotong.,Zhang, Jingyuan.,Jiang, Renhe.,...&Song, Xuan.(2024).Hyper-relational knowledge graph neural network for next POI recommendation.WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS,27(4).
MLA
Zhang, Jixiao,et al."Hyper-relational knowledge graph neural network for next POI recommendation".WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS 27.4(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang, Jixiao]的文章
[Li, Yongkang]的文章
[Zou, Ruotong]的文章
百度学术
百度学术中相似的文章
[Zhang, Jixiao]的文章
[Li, Yongkang]的文章
[Zou, Ruotong]的文章
必应学术
必应学术中相似的文章
[Zhang, Jixiao]的文章
[Li, Yongkang]的文章
[Zou, Ruotong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。