中文版 | English
题名

GQL-based bound-preserving and locally divergence-free central discontinuous Galerkin schemes for relativistic magnetohydrodynamics

作者
通讯作者Wu, Kailiang
发表日期
2024-10-01
DOI
发表期刊
ISSN
0021-9991
EISSN
1090-2716
卷号514
摘要
This paper develops novel and robust central discontinuous Galerkin (CDG) schemes of arbitrarily high-order accuracy for special relativistic magnetohydrodynamics (RMHD) with a general equation of state (EOS). These schemes are provably bound-preserving (BP), meaning they consistently preserve the upper bound for subluminal fluid velocity and the positivity of density and pressure, while also (locally) maintaining the divergence-free (DF) constraint for the magnetic field. For 1D RMHD, the standard CDG method is exactly DF, and its BP property is proven under a condition achievable by the BP limiter. For 2D RMHD, we design provably BP and locally DF CDG schemes based on the suitable discretization of a modified RMHD system, which is the relativistic analogue of Godunov's symmetrizable form of the non-relativistic MHD system (Godunov, 1972 [19]). A key novelty in our schemes is the meticulous discretization of additional source terms in the modified RMHD equations, so as to precisely counteract the influence of divergence errors on the BP property across overlapping meshes. Notably, we provide rigorous proofs of the BP property for our CDG schemes and first establish the theoretical connection between BP and discrete DF properties on overlapping meshes for RMHD. Owing to the absence of explicit expressions for primitive variables in terms of conserved variables, the constraints of physical bounds are strongly nonlinear, making the BP proofs highly nontrivial. We overcome these challenges through technical estimates within the geometric quasilinearization (GQL) framework (Wu and Shu, 2023 [49]), which equivalently converts the nonlinear constraints into linear ones. Furthermore, we introduce a new 2D cell average decomposition on overlapping meshes, which relaxes the theoretical BP CFL constraint and reduces the number of internal nodes, thereby enhancing the efficiency of the 2D BP CDG method. Finally, we implement the proposed CDG schemes for extensive RMHD problems with various EOSs, demonstrating their robustness and effectiveness in challenging scenarios like ultra-relativistic blasts and jets in strongly magnetized environments.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
Shenzhen Science and Technology Program[RCJC20221008092757098] ; National Natural Science Foundation of China[12171227]
WOS研究方向
Computer Science ; Physics
WOS类目
Computer Science, Interdisciplinary Applications ; Physics, Mathematical
WOS记录号
WOS:001260834200001
出版者
EI入藏号
20242616352070
EI主题词
Equations of state ; Galerkin methods
EI分类号
Magnetohydrodynamics (MHD) Power Generation:615.3 ; Numerical Methods:921.6
ESI学科分类
PHYSICS
来源库
Web of Science
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/787123
专题理学院_数学系
南方科技大学
作者单位
1.Southern Univ Sci & Technol, Shenzhen Int Ctr Math, Shenzhen 518055, Peoples R China
2.Southern Univ Sci & Technol, Dept Math, Shenzhen 518055, Peoples R China
3.Natl Ctr Appl Math Shenzhen NCAMS, Shenzhen 518055, Peoples R China
第一作者单位南方科技大学
通讯作者单位南方科技大学;  数学系
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Ding, Shengrong,Wu, Kailiang. GQL-based bound-preserving and locally divergence-free central discontinuous Galerkin schemes for relativistic magnetohydrodynamics[J]. JOURNAL OF COMPUTATIONAL PHYSICS,2024,514.
APA
Ding, Shengrong,&Wu, Kailiang.(2024).GQL-based bound-preserving and locally divergence-free central discontinuous Galerkin schemes for relativistic magnetohydrodynamics.JOURNAL OF COMPUTATIONAL PHYSICS,514.
MLA
Ding, Shengrong,et al."GQL-based bound-preserving and locally divergence-free central discontinuous Galerkin schemes for relativistic magnetohydrodynamics".JOURNAL OF COMPUTATIONAL PHYSICS 514(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Ding, Shengrong]的文章
[Wu, Kailiang]的文章
百度学术
百度学术中相似的文章
[Ding, Shengrong]的文章
[Wu, Kailiang]的文章
必应学术
必应学术中相似的文章
[Ding, Shengrong]的文章
[Wu, Kailiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。