中文版 | English
题名

Multimodal Sensing for Depression Risk Detection: Integrating Audio, Video, and Text Data

作者
通讯作者Zhang, Zhiguo; Wang, Jianhong
发表日期
2024-06-01
DOI
发表期刊
EISSN
1424-8220
卷号24期号:12
摘要
Depression is a major psychological disorder with a growing impact worldwide. Traditional methods for detecting the risk of depression, predominantly reliant on psychiatric evaluations and self-assessment questionnaires, are often criticized for their inefficiency and lack of objectivity. Advancements in deep learning have paved the way for innovations in depression risk detection methods that fuse multimodal data. This paper introduces a novel framework, the Audio, Video, and Text Fusion-Three Branch Network (AVTF-TBN), designed to amalgamate auditory, visual, and textual cues for a comprehensive analysis of depression risk. Our approach encompasses three dedicated branches-Audio Branch, Video Branch, and Text Branch-each responsible for extracting salient features from the corresponding modality. These features are subsequently fused through a multimodal fusion (MMF) module, yielding a robust feature vector that feeds into a predictive modeling layer. To further our research, we devised an emotion elicitation paradigm based on two distinct tasks-reading and interviewing-implemented to gather a rich, sensor-based depression risk detection dataset. The sensory equipment, such as cameras, captures subtle facial expressions and vocal characteristics essential for our analysis. The research thoroughly investigates the data generated by varying emotional stimuli and evaluates the contribution of different tasks to emotion evocation. During the experiment, the AVTF-TBN model has the best performance when the data from the two tasks are simultaneously used for detection, where the F1 Score is 0.78, Precision is 0.76, and Recall is 0.81. Our experimental results confirm the validity of the paradigm and demonstrate the efficacy of the AVTF-TBN model in detecting depression risk, showcasing the crucial role of sensor-based data in mental health detection.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
Shenzhen Science and Technology Research and Development Fund for Sustainable Development Project[KCXFZ20201221173613036] ; Medical Scientific Research Foundation of Guangdong Province of China[B2023078] ; Shenzhen Soft Science Research Program Project[RKX20220705152815035]
WOS研究方向
Chemistry ; Engineering ; Instruments & Instrumentation
WOS类目
Chemistry, Analytical ; Engineering, Electrical & Electronic ; Instruments & Instrumentation
WOS记录号
WOS:001255873400001
出版者
ESI学科分类
CHEMISTRY
来源库
Web of Science
引用统计
被引频次[WOS]:4
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/787318
专题南方科技大学
作者单位
1.Shenzhen Univ, Hlth Sci Ctr, Sch Biomed Engn, Shenzhen 518060, Peoples R China
2.Natl Reg Key Technol Engn Lab Med Ultrasound, Guangdong Prov Key Lab Biomed Measurements & Ultra, Shenzhen 518060, Peoples R China
3.Southern Univ Sci & Technol, Affiliated Mental Hlth Ctr, Shenzhen 518055, Peoples R China
4.Shenzhen Kangning Hosp, Dept Clin Psychol, Shenzhen 518020, Peoples R China
5.Shenzhen Mental Hlth Ctr, Shenzhen 518020, Peoples R China
6.Harbin Inst Technol, Sch Comp Sci & Technol, Shenzhen 518055, Peoples R China
7.Peng Cheng Lab, Shenzhen 518055, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Zhenwei,Zhang, Shengming,Ni, Dong,et al. Multimodal Sensing for Depression Risk Detection: Integrating Audio, Video, and Text Data[J]. SENSORS,2024,24(12).
APA
Zhang, Zhenwei.,Zhang, Shengming.,Ni, Dong.,Wei, Zhaoguo.,Yang, Kongjun.,...&Wang, Jianhong.(2024).Multimodal Sensing for Depression Risk Detection: Integrating Audio, Video, and Text Data.SENSORS,24(12).
MLA
Zhang, Zhenwei,et al."Multimodal Sensing for Depression Risk Detection: Integrating Audio, Video, and Text Data".SENSORS 24.12(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang, Zhenwei]的文章
[Zhang, Shengming]的文章
[Ni, Dong]的文章
百度学术
百度学术中相似的文章
[Zhang, Zhenwei]的文章
[Zhang, Shengming]的文章
[Ni, Dong]的文章
必应学术
必应学术中相似的文章
[Zhang, Zhenwei]的文章
[Zhang, Shengming]的文章
[Ni, Dong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。