中文版 | English
题名

Screening and Optimization of Soil Remediation Strategies Assisted by Machine Learning

作者
通讯作者Liu, Chongxuan
发表日期
2024-06-01
DOI
发表期刊
EISSN
2227-9717
卷号12期号:6
摘要
A numerical approach assisted by machine learning was developed for screening and optimizing soil remediation strategies. The approach includes a reactive transport model for simulating the remediation cost and effect of applicable remediation technologies and their combinations for a target site. The simulated results were used to establish a relationship between the cost and effect using a machine learning method. The relationship was then used by an optimization method to provide optimal remediation strategies under various constraints and requirements for the target site. The approach was evaluated for a site contaminated with both arsenic and polycyclic aromatic hydrocarbons at a former shipbuilding factory in Guangzhou City, China. An optimal strategy was obtained and successfully implemented at the site, which included the partial excavation of the contaminated soils and natural attenuation of the residual contaminated soils. The advantage of the approach is that it can fully consider the natural attenuation capacity in designing remediation strategies to reduce remediation costs and can provide cost-effective remediation strategies under variable constraints for policymakers. The approach is general and can be applied for screening and optimizing remediation strategies at other remediation sites.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
National Key Research and Development Program of China[2019YFC1803903] ; Center for Computational Science and Engineering at Southern University of Science and Technology[2017ZT07Z479] ; High level of special funds[G03050K001]
WOS研究方向
Engineering
WOS类目
Engineering, Chemical
WOS记录号
WOS:001255951900001
出版者
来源库
Web of Science
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/787327
专题工学院_环境科学与工程学院
作者单位
1.Southern Univ Sci & Technol, Sch Environm Sci & Engn, State Environm Protect Key Lab Integrated Surface, Shenzhen 518055, Peoples R China
2.Shenzhen Urban Publ Safety & Technol Inst, Shenzhen 518046, Peoples R China
第一作者单位环境科学与工程学院
通讯作者单位环境科学与工程学院
第一作者的第一单位环境科学与工程学院
推荐引用方式
GB/T 7714
Zhang, Bowei,Wang, Xin,Liu, Chongxuan. Screening and Optimization of Soil Remediation Strategies Assisted by Machine Learning[J]. PROCESSES,2024,12(6).
APA
Zhang, Bowei,Wang, Xin,&Liu, Chongxuan.(2024).Screening and Optimization of Soil Remediation Strategies Assisted by Machine Learning.PROCESSES,12(6).
MLA
Zhang, Bowei,et al."Screening and Optimization of Soil Remediation Strategies Assisted by Machine Learning".PROCESSES 12.6(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang, Bowei]的文章
[Wang, Xin]的文章
[Liu, Chongxuan]的文章
百度学术
百度学术中相似的文章
[Zhang, Bowei]的文章
[Wang, Xin]的文章
[Liu, Chongxuan]的文章
必应学术
必应学术中相似的文章
[Zhang, Bowei]的文章
[Wang, Xin]的文章
[Liu, Chongxuan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。