中文版 | English
题名

Probabilistic Prediction of Floating Offshore Wind Turbine Platform Motions via Uncertainty Quantification and Information Integration

作者
通讯作者Zou, Guang
发表日期
2024-06-01
DOI
发表期刊
EISSN
2077-1312
卷号12期号:6
摘要
The accurate prediction of short-term platform motions in a real environment is crucial for the safe design, operation, and maintenance of floating offshore wind turbines (FOWTs). Numerical simulations of motions are typically associated with high uncertainties due to abstracted theoretical models, empirical parameters, initial environment parameters, etc. Therefore, it is necessary to integrate other sources of information associated with less uncertainty, e.g., monitoring data, for accurate predictions. In this paper, we propose a probabilistic prediction based on the Bayesian approach that logically integrates motion monitoring data with simulated motion predictions of FOWTs, considering uncertainties in the environment model, structural properties, motion prediction method, monitoring data, etc. The approach consists of constructing a prior probability density function (PDF) of a random variable (which characterizes the largest value of the initial motion response) via numerical simulations and a likelihood function based on platform motion monitoring data and deriving a posterior PDF of the random variable by Bayesian updating. Then, posterior distributions of short-term extreme motion responses are derived using the posterior PDF of the random variable, representing lower uncertainty and improved accuracy. A Metropolis-Hastings algorithm is adopted to obtain PDFs of complex probability distributions. The effectiveness of the approach is demonstrated on a real FOWT platform in Scotland. The proposed probabilistic prediction approach results in posterior distributions of short-term extreme platform motions associated with less uncertainty and higher accuracy, which is attributed to integrating prior knowledge with monitoring data.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
第一 ; 通讯
WOS研究方向
Engineering ; Oceanography
WOS类目
Engineering, Marine ; Engineering, Ocean ; Oceanography
WOS记录号
WOS:001255830300001
出版者
来源库
Web of Science
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/787328
专题工学院_海洋科学与工程系
作者单位
1.Southern Univ Sci & Technol, Dept Ocean Sci & Engn, Shenzhen 518055, Peoples R China
2.Sun Yat sen Univ, Sch Civil Engn, Zhuhai 519082, Peoples R China
3.Norwegian Geotech Inst, Dept Offshore Energy, N-0484 Oslo, Norway
第一作者单位海洋科学与工程系
通讯作者单位海洋科学与工程系
第一作者的第一单位海洋科学与工程系
推荐引用方式
GB/T 7714
Li, Na,Zou, Guang,Feng, Yu,et al. Probabilistic Prediction of Floating Offshore Wind Turbine Platform Motions via Uncertainty Quantification and Information Integration[J]. JOURNAL OF MARINE SCIENCE AND ENGINEERING,2024,12(6).
APA
Li, Na,Zou, Guang,Feng, Yu,&Ali, Liaqat.(2024).Probabilistic Prediction of Floating Offshore Wind Turbine Platform Motions via Uncertainty Quantification and Information Integration.JOURNAL OF MARINE SCIENCE AND ENGINEERING,12(6).
MLA
Li, Na,et al."Probabilistic Prediction of Floating Offshore Wind Turbine Platform Motions via Uncertainty Quantification and Information Integration".JOURNAL OF MARINE SCIENCE AND ENGINEERING 12.6(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Li, Na]的文章
[Zou, Guang]的文章
[Feng, Yu]的文章
百度学术
百度学术中相似的文章
[Li, Na]的文章
[Zou, Guang]的文章
[Feng, Yu]的文章
必应学术
必应学术中相似的文章
[Li, Na]的文章
[Zou, Guang]的文章
[Feng, Yu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。