中文版 | English
题名

Efficient molecular conformation generation with quantum-inspired algorithm

作者
通讯作者Qiao, Nan; Yung, Man-Hong
发表日期
2024-07-01
DOI
发表期刊
ISSN
1610-2940
EISSN
0948-5023
卷号30期号:7
摘要
ContextConformation generation, also known as molecular unfolding (MU), is a crucial step in structure-based drug design, remaining a challenging combinatorial optimization problem. Quantum annealing (QA) has shown great potential for solving certain combinatorial optimization problems over traditional classical methods such as simulated annealing (SA). However, a recent study showed that a 2000-qubit QA hardware was still unable to outperform SA for the MU problem. Here, we propose the use of quantum-inspired algorithm to solve the MU problem, in order to go beyond traditional SA. We introduce a highly compact phase encoding method which can exponentially reduce the representation space, compared with the previous one-hot encoding method. For benchmarking, we tested this new approach on the public QM9 dataset generated by density functional theory (DFT). The root-mean-square deviation between the conformation determined by our approach and DFT is negligible (less than about 0.5 & Aring;), which underpins the validity of our approach. Furthermore, the median time-to-target metric can be reduced by a factor of five compared to SA. Additionally, we demonstrate a simulation experiment by MindQuantum using quantum approximate optimization algorithm (QAOA) to reach optimal results. These results indicate that quantum-inspired algorithms can be applied to solve practical problems even before quantum hardware becomes mature.MethodsThe objective function of MU is defined as the sum of all internal distances between atoms in the molecule, which is a high-order unconstrained binary optimization (HUBO) problem. The degree of freedom of variables is discretized and encoded with binary variables by the phase encoding method. We employ the quantum-inspired simulated bifurcation algorithm for optimization. The public QM9 dataset is generated by DFT. The simulation experiment of quantum computation is implemented by MindQuantum using QAOA.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
通讯
WOS研究方向
Biochemistry & Molecular Biology ; Biophysics ; Chemistry ; Computer Science
WOS类目
Biochemistry & Molecular Biology ; Biophysics ; Chemistry, Multidisciplinary ; Computer Science, Interdisciplinary Applications
WOS记录号
WOS:001254814500001
出版者
ESI学科分类
CHEMISTRY
来源库
Web of Science
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/787358
专题量子科学与工程研究院
南方科技大学
作者单位
1.Fudan Univ, Inst Nanoelect Devices & Quantum Comp, Shanghai 200433, Peoples R China
2.Huawei Technol, Dept Cent Res Inst, Shenzhen 518129, Peoples R China
3.Huawei Cloud Comp Technol Co Ltd, Lab Hlth Intelligence, Guizhou 550025, Peoples R China
4.Huawei Cloud Comp Technol Co Ltd, Lab Hlth Intelligence, Shenzhen 550025, Guizhou, Peoples R China
5.Southern Univ Sci & Technol, Lab Hlth Intelligence, Shenzhen 518055, Peoples R China
6.Int Quantum Acad, Shenzhen 518048, Peoples R China
7.Southern Univ Sci & Technol, Guangdong Prov Key Lab Quantum Sci & Engn, Shenzhen 518055, Peoples R China
8.Southern Univ Sci & Technol, Shenzhen Key Lab Quantum Sci & Engn, Shenzhen 518055, Peoples R China
通讯作者单位南方科技大学;  量子科学与工程研究院
推荐引用方式
GB/T 7714
Li, Yunting,Cui, Xiaopeng,Xiong, Zhaoping,et al. Efficient molecular conformation generation with quantum-inspired algorithm[J]. JOURNAL OF MOLECULAR MODELING,2024,30(7).
APA
Li, Yunting.,Cui, Xiaopeng.,Xiong, Zhaoping.,Zou, Zuoheng.,Liu, Bowen.,...&Yung, Man-Hong.(2024).Efficient molecular conformation generation with quantum-inspired algorithm.JOURNAL OF MOLECULAR MODELING,30(7).
MLA
Li, Yunting,et al."Efficient molecular conformation generation with quantum-inspired algorithm".JOURNAL OF MOLECULAR MODELING 30.7(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Li, Yunting]的文章
[Cui, Xiaopeng]的文章
[Xiong, Zhaoping]的文章
百度学术
百度学术中相似的文章
[Li, Yunting]的文章
[Cui, Xiaopeng]的文章
[Xiong, Zhaoping]的文章
必应学术
必应学术中相似的文章
[Li, Yunting]的文章
[Cui, Xiaopeng]的文章
[Xiong, Zhaoping]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。