题名 | Interfacial-Assembly-Induced In Situ Transformation from Aligned 1D Nanowires to Quasi-2D Nanofilms |
作者 | |
通讯作者 | He, Zhen; Jiang, Hui-Jun; Liu, Jian-Wei; Yu, Shu-Hong |
发表日期 | 2024-06-01
|
DOI | |
发表期刊 | |
ISSN | 0002-7863
|
EISSN | 1520-5126
|
卷号 | 146页码:19998-20008 |
摘要 | As the dimensionality of materials generally affects their characteristics, thin films composed of low-dimensional nanomaterials, such as nanowires (NWs) or nanoplates, are of great importance in modern engineering. Among various bottom-up film fabrication strategies, interfacial assembly of nanoscale building blocks holds great promise in constructing large-scale aligned thin films, leading to emergent or enhanced collective properties compared to individual building blocks. As for 1D nanostructures, the interfacial self-assembly causes the morphology orientation, effectively achieving anisotropic electrical, thermal, and optical conduction. However, issues such as defects between each nanoscale building block, crystal orientation, and homogeneity constrain the application of ordered films. The precise control of transdimensional synthesis and the formation mechanism from 1D to 2D are rarely reported. To meet this gap, we introduce an interfacial-assembly-induced interfacial synthesis strategy and successfully synthesize quasi-2D nanofilms via the oriented attachment of 1D NWs on the liquid interface. Theoretical sampling and simulation show that NWs on the liquid interface maintain their lowest interaction energy for the ordered crystal plane (110) orientation and then rearrange and attach to the quasi-2D nanofilm. This quasi-2D nanofilm shows enhanced electric conductivity and unique optical properties compared with its corresponding 1D geometry materials. Uncovering these growth pathways of the 1D-to-2D transition provides opportunities for future material design and synthesis at the interface. |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | National Natural Science Foundation of China["22005287","22375083","22175164","22293044","22005289","92263102","22373090"]
; National Natural Science Foundation of China["ZDSYS20220401161800001","G03050K002"]
; Shenzhen Science and Technology Program["2021YFA0715700","2018YFE0202201"]
; National Key Research and Development Program of China[2023z04020009]
; Major Basic Research Project of Anhui Province[YD9990002019]
|
WOS研究方向 | Chemistry
|
WOS类目 | Chemistry, Multidisciplinary
|
WOS记录号 | WOS:001247058200001
|
出版者 | |
EI入藏号 | 20242516278129
|
EI主题词 | Crystal orientation
; Morphology
; Optical properties
; Thin films
|
EI分类号 | Light/Optics:741.1
; Nanotechnology:761
; Physical Properties of Gases, Liquids and Solids:931.2
; Solid State Physics:933
; Crystal Lattice:933.1.1
; Materials Science:951
|
来源库 | Web of Science
|
引用统计 | |
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/787959 |
专题 | 工学院_材料科学与工程系 |
作者单位 | 1.Southern Univ Sci & Technol, Inst Innovat Mat, Guangming Adv Res Inst, Dept Mat Sci & Engn, Shenzhen 518055, Peoples R China 2.Univ Sci & Technol China, Inst Biomimet Mat & Chem, Anhui Engn Lab Biomimet Mat, New Cornerstone Sci Lab,Div Nanomat & Chem,Hefei N, Hefei 230026, Peoples R China 3.Univ Sci & Technol China, Hefei Natl Res Ctr Phys Sci Microscale, Dept Chem Phys, iChEM, Hefei 230026, Peoples R China |
第一作者单位 | 材料科学与工程系 |
通讯作者单位 | 材料科学与工程系 |
第一作者的第一单位 | 材料科学与工程系 |
推荐引用方式 GB/T 7714 |
He, Zhen,Su, Jie,Wang, Yu-Tao,et al. Interfacial-Assembly-Induced In Situ Transformation from Aligned 1D Nanowires to Quasi-2D Nanofilms[J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY,2024,146:19998-20008.
|
APA |
He, Zhen.,Su, Jie.,Wang, Yu-Tao.,Wang, Kang.,Wang, Jin-Long.,...&Yu, Shu-Hong.(2024).Interfacial-Assembly-Induced In Situ Transformation from Aligned 1D Nanowires to Quasi-2D Nanofilms.JOURNAL OF THE AMERICAN CHEMICAL SOCIETY,146,19998-20008.
|
MLA |
He, Zhen,et al."Interfacial-Assembly-Induced In Situ Transformation from Aligned 1D Nanowires to Quasi-2D Nanofilms".JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 146(2024):19998-20008.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论