中文版 | English
题名

New High-Order Numerical Methods for Hyperbolic Systems of Nonlinear PDEs with Uncertainties

作者
通讯作者Kurganov, Alexander
发表日期
2024-06-01
DOI
发表期刊
ISSN
2096-6385
EISSN
2661-8893
卷号6页码:2011-2044
摘要
In this paper, we develop new high-order numerical methods for hyperbolic systems of nonlinear partial differential equations (PDEs) with uncertainties. The new approach is realized in the semi-discrete finite-volume framework and is based on fifth-order weighted essentially non-oscillatory (WENO) interpolations in (multidimensional) random space combined with second-order piecewise linear reconstruction in physical space. Compared with spectral approximations in the random space, the presented methods are essentially non-oscillatory as they do not suffer from the Gibbs phenomenon while still achieving high-order accuracy. The new methods are tested on a number of numerical examples for both the Euler equations of gas dynamics and the Saint-Venant system of shallow-water equations. In the latter case, the methods are also proven to be well-balanced and positivity-preserving.
关键词
相关链接[来源记录]
收录类别
ESCI ; EI
语种
英语
学校署名
通讯
资助项目
Division of Mathematical Sciences[DMS-2208438] ; NSF["20021702/GRK2326","333849990/IRTG-2379","HE5386/ 18-1","19-2","22-1","EXC-2023"] ; DFG (German Research Foundation)[390621612] ; Internet of Production[12171226] ; NSFC[2019B030301001] ; Guangdong Provincial Key Laboratory of Computational Science and Material Design, China["525853336","SPP 2410"] ; DFG[525853336]
WOS研究方向
Mathematics
WOS类目
Mathematics, Applied
WOS记录号
WOS:001238562500001
出版者
EI入藏号
20242316219804
EI主题词
Equations of motion ; Gas dynamics ; Interpolation ; Nonlinear equations ; Numerical methods ; Partial differential equations ; Piecewise linear techniques
EI分类号
Gas Dynamics:631.1.2 ; Calculus:921.2 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4 ; Numerical Methods:921.6
来源库
Web of Science
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/788143
专题理学院_数学系
南方科技大学
作者单位
1.North Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
2.Rhein Westfal TH Aachen, Dept Math, Aachen, Germany
3.Southern Univ Sci & Technol, Shenzhen Int Ctr Math, Dept Math, Shenzhen 518055, Guangdong, Peoples R China
4.Southern Univ Sci & Technol, Guangdong Prov Key Lab Computat Sci & Mat Design, Shenzhen 518055, Guangdong, Peoples R China
5.Johannes Gutenberg Univ Mainz, Inst Math, Mainz, Germany
通讯作者单位数学系;  南方科技大学
推荐引用方式
GB/T 7714
Chertock, Alina,Herty, Michael,Iskhakov, Arsen S.,et al. New High-Order Numerical Methods for Hyperbolic Systems of Nonlinear PDEs with Uncertainties[J]. COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION,2024,6:2011-2044.
APA
Chertock, Alina,Herty, Michael,Iskhakov, Arsen S.,Janajra, Safa,Kurganov, Alexander,&Lukacova-Medvid'ova, Maria.(2024).New High-Order Numerical Methods for Hyperbolic Systems of Nonlinear PDEs with Uncertainties.COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION,6,2011-2044.
MLA
Chertock, Alina,et al."New High-Order Numerical Methods for Hyperbolic Systems of Nonlinear PDEs with Uncertainties".COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION 6(2024):2011-2044.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chertock, Alina]的文章
[Herty, Michael]的文章
[Iskhakov, Arsen S.]的文章
百度学术
百度学术中相似的文章
[Chertock, Alina]的文章
[Herty, Michael]的文章
[Iskhakov, Arsen S.]的文章
必应学术
必应学术中相似的文章
[Chertock, Alina]的文章
[Herty, Michael]的文章
[Iskhakov, Arsen S.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。