题名 | New High-Order Numerical Methods for Hyperbolic Systems of Nonlinear PDEs with Uncertainties |
作者 | |
通讯作者 | Kurganov, Alexander |
发表日期 | 2024-06-01
|
DOI | |
发表期刊 | |
ISSN | 2096-6385
|
EISSN | 2661-8893
|
卷号 | 6页码:2011-2044 |
摘要 | In this paper, we develop new high-order numerical methods for hyperbolic systems of nonlinear partial differential equations (PDEs) with uncertainties. The new approach is realized in the semi-discrete finite-volume framework and is based on fifth-order weighted essentially non-oscillatory (WENO) interpolations in (multidimensional) random space combined with second-order piecewise linear reconstruction in physical space. Compared with spectral approximations in the random space, the presented methods are essentially non-oscillatory as they do not suffer from the Gibbs phenomenon while still achieving high-order accuracy. The new methods are tested on a number of numerical examples for both the Euler equations of gas dynamics and the Saint-Venant system of shallow-water equations. In the latter case, the methods are also proven to be well-balanced and positivity-preserving. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
资助项目 | Division of Mathematical Sciences[DMS-2208438]
; NSF["20021702/GRK2326","333849990/IRTG-2379","HE5386/ 18-1","19-2","22-1","EXC-2023"]
; DFG (German Research Foundation)[390621612]
; Internet of Production[12171226]
; NSFC[2019B030301001]
; Guangdong Provincial Key Laboratory of Computational Science and Material Design, China["525853336","SPP 2410"]
; DFG[525853336]
|
WOS研究方向 | Mathematics
|
WOS类目 | Mathematics, Applied
|
WOS记录号 | WOS:001238562500001
|
出版者 | |
EI入藏号 | 20242316219804
|
EI主题词 | Equations of motion
; Gas dynamics
; Interpolation
; Nonlinear equations
; Numerical methods
; Partial differential equations
; Piecewise linear techniques
|
EI分类号 | Gas Dynamics:631.1.2
; Calculus:921.2
; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
; Numerical Methods:921.6
|
来源库 | Web of Science
|
引用统计 | |
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/788143 |
专题 | 理学院_数学系 南方科技大学 |
作者单位 | 1.North Carolina State Univ, Dept Math, Raleigh, NC 27695 USA 2.Rhein Westfal TH Aachen, Dept Math, Aachen, Germany 3.Southern Univ Sci & Technol, Shenzhen Int Ctr Math, Dept Math, Shenzhen 518055, Guangdong, Peoples R China 4.Southern Univ Sci & Technol, Guangdong Prov Key Lab Computat Sci & Mat Design, Shenzhen 518055, Guangdong, Peoples R China 5.Johannes Gutenberg Univ Mainz, Inst Math, Mainz, Germany |
通讯作者单位 | 数学系; 南方科技大学 |
推荐引用方式 GB/T 7714 |
Chertock, Alina,Herty, Michael,Iskhakov, Arsen S.,et al. New High-Order Numerical Methods for Hyperbolic Systems of Nonlinear PDEs with Uncertainties[J]. COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION,2024,6:2011-2044.
|
APA |
Chertock, Alina,Herty, Michael,Iskhakov, Arsen S.,Janajra, Safa,Kurganov, Alexander,&Lukacova-Medvid'ova, Maria.(2024).New High-Order Numerical Methods for Hyperbolic Systems of Nonlinear PDEs with Uncertainties.COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION,6,2011-2044.
|
MLA |
Chertock, Alina,et al."New High-Order Numerical Methods for Hyperbolic Systems of Nonlinear PDEs with Uncertainties".COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION 6(2024):2011-2044.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论