题名 | Enhanced osteogenic and ROS-scavenging MXene nanosheets incorporated gelatin-based nanocomposite hydrogels for critical-sized calvarial defect repair |
作者 | |
通讯作者 | Li, Nan; Zeng, Hui; Chen, Yingqi |
发表日期 | 2024-06-01
|
DOI | |
发表期刊 | |
ISSN | 0141-8130
|
EISSN | 1879-0003
|
卷号 | 269 |
摘要 | The healing of critical-sized bone defects is a major challenge in the field of bone tissue engineering. Gelatinrelated hydrogels have emerged as a potential solution due to their desirable properties. However, their limited osteogenic, mechanical, and reactive oxygen species (ROS)-scavenging capabilities have hindered their clinical application. To overcome this issue, we developed a biofunctional gelatin-Mxene nanocomposite hydrogel. Firstly, we prepared two-dimensional (2D) Ti3C2 MXene nanosheets using a layer delamination method. Secondly, these nanosheets were incorporated into a transglutaminase (TG) enzyme-containing gallic acid-imbedded gelatin (GGA) pre-gel solution to create an injectable GGA-MXene (GM) nanocomposite hydrogel. The GM hydrogels exhibited superior compressive strength (44-75.6 kPa) and modulus (24-44.5 kPa) compared to the GGA hydrogels. Additionally, the GM hydrogel demonstrated the ability to scavenge reactive oxygen species (OH- and DPPH radicals), protecting MC3T3-E1 cells from oxidative stress. GM hydrogels were non-toxic to MC3T3-E1 cells, increased alkaline phosphatase secretion, calcium nodule formation, and upregulated osteogenic gene expressions (ALP, OCN, and RUNX2). The GM400 hydrogel was implanted in critical-sized calvarial defects in rats. Remarkably, it exhibited significant potential for promoting new bone formation. These findings indicated that GM hydrogel could be a viable candidate for future clinical applications in the treatment of critical-sized bone defects. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
资助项目 | Natural Science Foundation of China["82202664","32000516","82172432"]
; Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research[ZDSYS20220606100602005]
; Shenzhen Sustainable Development Project[KCXFZ20201221173411031]
; Guangdong Basic and Applied Basic Research Foundation["2023A1515012764","2021A1515220053","2022A1515220038"]
; Shenzhen Science and Technology Project["JCYJ20190809165805604","JCYJ20220818102815033","JCYJ20220531094214032"]
|
WOS研究方向 | Biochemistry & Molecular Biology
; Chemistry
; Polymer Science
|
WOS类目 | Biochemistry & Molecular Biology
; Chemistry, Applied
; Polymer Science
|
WOS记录号 | WOS:001239036800001
|
出版者 | |
ESI学科分类 | BIOLOGY & BIOCHEMISTRY
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:2
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/788252 |
专题 | 南方科技大学第一附属医院 |
作者单位 | 1.Peking Univ Shenzhen Hosp, Natl & Local Joint Engn Res Ctr Orthopaed Biomat, Dept Bone & Joint Surg, Shenzhen 518036, Peoples R China 2.Shenzhen New Frontier United Family Hosp, Internal Med, Shenzhen 518031, Peoples R China 3.Shenzhen Univ, Med Sch, Shenzhen 518055, Guangdong, Peoples R China 4.Jinan Univ, Southern Univ Sci & Technol, Shenzhen Peoples Hosp, Affiliated Hosp 1,Dept Stomatol,Clin Med Sch 2, Shenzhen 518020, Peoples R China 5.Vellore Inst Technol VIT, Ctr Biomat Cellular & Mol Theranost CBCMT, Vellore 632014, Tamil Nadu, India 6.Univ Pittsburgh, McGowan Inst Regenerat Med, Pittsburgh, PA 15219 USA |
通讯作者单位 | 南方科技大学第一附属医院 |
推荐引用方式 GB/T 7714 |
Zhao, Jin,Wang, Tiehua,Zhu, Yuanchao,et al. Enhanced osteogenic and ROS-scavenging MXene nanosheets incorporated gelatin-based nanocomposite hydrogels for critical-sized calvarial defect repair[J]. INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES,2024,269.
|
APA |
Zhao, Jin.,Wang, Tiehua.,Zhu, Yuanchao.,Qin, Haotian.,Qian, Junyu.,...&Chen, Yingqi.(2024).Enhanced osteogenic and ROS-scavenging MXene nanosheets incorporated gelatin-based nanocomposite hydrogels for critical-sized calvarial defect repair.INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES,269.
|
MLA |
Zhao, Jin,et al."Enhanced osteogenic and ROS-scavenging MXene nanosheets incorporated gelatin-based nanocomposite hydrogels for critical-sized calvarial defect repair".INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES 269(2024).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论