中文版 | English
题名

Multi-Constraint Transferable Generative Adversarial Networks for Cross-Modal Brain Image Synthesis

作者
通讯作者Li, Yuexiang; Zheng, Yefeng
发表日期
2024-05-01
DOI
发表期刊
ISSN
0920-5691
EISSN
1573-1405
摘要
Recent progress in generative models has led to the drastic growth of research in image generation. Existing approaches show visually compelling results by learning multi-modal distributions, but they still lack realism, especially in certain scenarios like medical image synthesis. In this paper, we propose a novel Brain Generative Adversarial Network (BrainGAN) that explores GANs with multi-constraint and transferable property for cross-modal brain image synthesis. We formulate BrainGAN by introducing a unified framework with new constraints that can enhance modal matching, texture details and anatomical structure, simultaneously. We show how BrainGAN can learn meaningful tissue representations with rich variability of brain images. In addition to generating 3D volumes that are visually indistinguishable from real ones, we model adversarial discriminators and segmentors jointly, along with the proposed cost functions, which forces our networks to synthesize brain MRIs with realistic textures conditioned on anatomical structures. BrainGAN is evaluated on three public datasets, where it consistently outperforms the other state-of-the-art approaches by a large margin, advancing cross-modal synthesis of brain images both visually and practically.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence
WOS记录号
WOS:001233690200003
出版者
ESI学科分类
ENGINEERING
来源库
Web of Science
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/788288
专题南方科技大学
作者单位
1.Jarvis Res Ctr, Tencent YouTu Lab, Shenzhen, Peoples R China
2.Guangxi Med Univ, Guangxi Key Lab Genom & Personalized Med, Med AI Res MARS Grp, Nanning 530021, Guangxi, Peoples R China
3.Southern Univ Sci & Technol, Shenzhen, Peoples R China
4.United Imaging Healthcare Co Ltd, Cent Res Inst, Beijing, Peoples R China
5.Univ Cent Florida, Orlando, FL USA
6.Univ Chinese Acad Sci, UCAS Terminus AI Lab, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Huang, Yawen,Zheng, Hao,Li, Yuexiang,et al. Multi-Constraint Transferable Generative Adversarial Networks for Cross-Modal Brain Image Synthesis[J]. INTERNATIONAL JOURNAL OF COMPUTER VISION,2024.
APA
Huang, Yawen.,Zheng, Hao.,Li, Yuexiang.,Zheng, Feng.,Zhen, Xiantong.,...&Zheng, Yefeng.(2024).Multi-Constraint Transferable Generative Adversarial Networks for Cross-Modal Brain Image Synthesis.INTERNATIONAL JOURNAL OF COMPUTER VISION.
MLA
Huang, Yawen,et al."Multi-Constraint Transferable Generative Adversarial Networks for Cross-Modal Brain Image Synthesis".INTERNATIONAL JOURNAL OF COMPUTER VISION (2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Huang, Yawen]的文章
[Zheng, Hao]的文章
[Li, Yuexiang]的文章
百度学术
百度学术中相似的文章
[Huang, Yawen]的文章
[Zheng, Hao]的文章
[Li, Yuexiang]的文章
必应学术
必应学术中相似的文章
[Huang, Yawen]的文章
[Zheng, Hao]的文章
[Li, Yuexiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。