中文版 | English
题名

CGgraph: An Ultra-fast Graph Processing System on Modern Commodity CPU-GPU Co-processor

作者
通讯作者Tang, Bo; Yuan, Ye
发表日期
2024-02-01
DOI
发表期刊
ISSN
2150-8097
卷号17期号:6
摘要
["In recent years, many CPU-GPU heterogeneous graph processing systems have been developed in both academic and industrial to facilitate large-scale graph processing in various applications, e.g., social networks and biological networks. However, the performance of existing systems can be significantly improved by addressing two prevailing challenges: GPU memory over-subscription and efficient CPU-GPU cooperative processing.","In this work, we propose CGgraph, an ultra-fast CPU-GPU graph processing system to address these challenges. In particular, CGgraph overcomes GPU-memory over-subscription by extracting a subgraph which only needs to be loaded into GPU memory once, but its vertices and edges can be used in multiple iterations during the graph processing procedure. To support efficient CPU-GPU co-processing, we design a CPU-GPU cooperative processing scheme, which balances the workloads between CPU and GPU by on-demand task allocation. To evaluate the efficiency of CGgraph, we conduct extensive experiments, comparing it with 7 state-of-the-art systems using 4 well-known graph algorithms on 6 real-world graphs. Our prototype system CGgraph outperforms all existing systems, delivering up to an order of magnitude improvement. Moreover, CGgraph on a modern commodity machine with a CPU-GPU co-processor yields superior (or at the very least, comparable) performance compared to existing systems on a high-end CPU-GPU server."]
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
National Key RD Program of China[2022YFB2702100] ; NSFC["61932004","62225203","U21A20516"] ; DITDP[JCKY2021211B017] ; Shenzhen Fundamental Research Program[20220815112848002] ; Guangdong Provincial Key Laboratory[2020B121201001]
WOS研究方向
Computer Science
WOS类目
Computer Science, Information Systems ; Computer Science, Theory & Methods
WOS记录号
WOS:001223351100020
出版者
来源库
Web of Science
引用统计
被引频次[WOS]:3
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/788290
专题南方科技大学
作者单位
1.Northeastern Univ, Boston, MA 02115 USA
2.Southern Univ Sci & Technol, Shenzhen, Peoples R China
3.Beijing Inst Technol, Beijing, Peoples R China
第一作者单位南方科技大学
通讯作者单位南方科技大学
推荐引用方式
GB/T 7714
Cui, Pengjie,Liu, Haotian,Tang, Bo,et al. CGgraph: An Ultra-fast Graph Processing System on Modern Commodity CPU-GPU Co-processor[J]. PROCEEDINGS OF THE VLDB ENDOWMENT,2024,17(6).
APA
Cui, Pengjie,Liu, Haotian,Tang, Bo,&Yuan, Ye.(2024).CGgraph: An Ultra-fast Graph Processing System on Modern Commodity CPU-GPU Co-processor.PROCEEDINGS OF THE VLDB ENDOWMENT,17(6).
MLA
Cui, Pengjie,et al."CGgraph: An Ultra-fast Graph Processing System on Modern Commodity CPU-GPU Co-processor".PROCEEDINGS OF THE VLDB ENDOWMENT 17.6(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Cui, Pengjie]的文章
[Liu, Haotian]的文章
[Tang, Bo]的文章
百度学术
百度学术中相似的文章
[Cui, Pengjie]的文章
[Liu, Haotian]的文章
[Tang, Bo]的文章
必应学术
必应学术中相似的文章
[Cui, Pengjie]的文章
[Liu, Haotian]的文章
[Tang, Bo]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。