中文版 | English
题名

Fast Nano-IR Hyperspectral Imaging Empowered by Large-Dataset-Free Miniaturized Spatial-Spectral Network

作者
通讯作者Wang, Lei; He, Hao
发表日期
2024-06-01
DOI
发表期刊
ISSN
0003-2700
EISSN
1520-6882
卷号96期号:23
摘要
The emerging field of nanoscale infrared (nano-IR) offers label-free molecular contrast, yet its imaging speed is limited by point-by-point traverse acquisition of a three-dimensional (3D) data cube. Here, we develop a spatial-spectral network (SS-Net), a miniaturized deep-learning model, together with compressive sampling to accelerate the nano-IR imaging. The compressive sampling is performed in both the spatial and spectral domains to accelerate the imaging process. The SS-Net is trained to learn the mapping from small nano-IR image patches to the corresponding spectra. With this elaborated mapping strategy, the training can be finished quickly within several minutes using the subsampled data, eliminating the need for a large-labeled dataset of common deep learning methods. We also designed an efficient loss function, which incorporates the image and spectral similarity to enhance the training. We first validate the SS-Net on an open stimulated Raman-scattering dataset; the results exhibit the potential of 10-fold imaging speed improvement with state-of-the-art performance. We then demonstrate the versatility of this approach on atomic force microscopy infrared (AFM-IR) microscopy with 7-fold imaging speed improvement, even on nanoscale Fourier transform infrared (nano-FTIR) microscopy with up to 261.6 folds faster imaging speed. We further showcase the generalization of this method on AFM-force volume-based multiparametric nanoimaging. This method establishes a paradigm for rapid nano-IR imaging, opening new possibilities for cutting-edge research in materials, photonics, and beyond.
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
National Natural Science Foundation of China["22174120","22204069","22272072"] ; National Natural Science Foundation of China["RCBS20221008093127073","JCYJ20230807093405012","20220815101643002"] ; Shenzhen Science and Technology Innovation Program[2023A1515012742]
WOS研究方向
Chemistry
WOS类目
Chemistry, Analytical
WOS记录号
WOS:001237266500001
出版者
ESI学科分类
CHEMISTRY
来源库
Web of Science
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/788291
专题工学院_材料科学与工程系
作者单位
1.Xiamen Univ, Pen Tung Sah Inst Micronano Sci & Technol, Xiamen 361102, Peoples R China
2.Xiamen Univ, Coll Chem & Chem Engn, Xiamen 361005, Peoples R China
3.Innovat Lab Sci & Technol Energy Mat Fujian Prov I, Xiamen 361102, Peoples R China
4.Jimei Univ, Sch Ocean Informat Engn, Xiamen 361021, Peoples R China
5.Southern Univ Sci & Technol, Dept Mat Sci & Engn, Shenzhen 518055, Peoples R China
通讯作者单位材料科学与工程系
推荐引用方式
GB/T 7714
Gao, Yun,Zheng, Peng,Meng, Zhao-Dong,et al. Fast Nano-IR Hyperspectral Imaging Empowered by Large-Dataset-Free Miniaturized Spatial-Spectral Network[J]. ANALYTICAL CHEMISTRY,2024,96(23).
APA
Gao, Yun.,Zheng, Peng.,Meng, Zhao-Dong.,Wang, Hai-Long.,You, En-Ming.,...&He, Hao.(2024).Fast Nano-IR Hyperspectral Imaging Empowered by Large-Dataset-Free Miniaturized Spatial-Spectral Network.ANALYTICAL CHEMISTRY,96(23).
MLA
Gao, Yun,et al."Fast Nano-IR Hyperspectral Imaging Empowered by Large-Dataset-Free Miniaturized Spatial-Spectral Network".ANALYTICAL CHEMISTRY 96.23(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Gao, Yun]的文章
[Zheng, Peng]的文章
[Meng, Zhao-Dong]的文章
百度学术
百度学术中相似的文章
[Gao, Yun]的文章
[Zheng, Peng]的文章
[Meng, Zhao-Dong]的文章
必应学术
必应学术中相似的文章
[Gao, Yun]的文章
[Zheng, Peng]的文章
[Meng, Zhao-Dong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。