中文版 | English
题名

Automatic detection of epilepsy from EEGs using a temporal convolutional network with a self-attention layer

作者
通讯作者Zhang, Jinxin
发表日期
2024-06-01
DOI
发表期刊
EISSN
1475-925X
卷号23期号:1
摘要
Background Over 60% of epilepsy patients globally are children, whose early diagnosis and treatment are critical for their development and can substantially reduce the disease's burden on both families and society. Numerous algorithms for automated epilepsy detection from EEGs have been proposed. Yet, the occurrence of epileptic seizures during an EEG exam cannot always be guaranteed in clinical practice. Models that exclusively use seizure EEGs for detection risk artificially enhanced performance metrics. Therefore, there is a pressing need for a universally applicable model that can perform automatic epilepsy detection in a variety of complex real-world scenarios.Method To address this problem, we have devised a novel technique employing a temporal convolutional neural network with self-attention (TCN-SA). Our model comprises two primary components: a TCN for extracting time-variant features from EEG signals, followed by a self-attention (SA) layer that assigns importance to these features. By focusing on key features, our model achieves heightened classification accuracy for epilepsy detection.Results The efficacy of our model was validated on a pediatric epilepsy dataset we collected and on the Bonn dataset, attaining accuracies of 95.50% on our dataset, and 97.37% (A v. E), and 93.50% (B vs E), respectively. When compared with other deep learning architectures (temporal convolutional neural network, self-attention network, and standardized convolutional neural network) using the same datasets, our TCN-SA model demonstrated superior performance in the automated detection of epilepsy.Conclusion The proven effectiveness of the TCN-SA approach substantiates its potential as a valuable tool for the automated detection of epilepsy, offering significant benefits in diverse and complex real-world clinical settings.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
其他
资助项目
Natural Science Foundation of Guangdong Province, China[2022A1515011237]
WOS研究方向
Engineering
WOS类目
Engineering, Biomedical
WOS记录号
WOS:001236549200001
出版者
来源库
Web of Science
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/788307
专题南方科技大学第一附属医院
作者单位
1.Sun Yat Sen Univ, Sch Publ Hlth, Dept Med Stat, Guangzhou 510080, Guangdong, Peoples R China
2.Shenzhen Peoples Hosp, Dept Pediat, Shenzhen 518020, Guangdong, Peoples R China
3.Jinan Univ, Clin Med Coll 2, Dept Pediat, Shenzhen 518020, Guangdong, Peoples R China
4.Southern Univ Sci & Technol, Affiliated Hosp 1, Dept Pediat, Shenzhen 518020, Guangdong, Peoples R China
推荐引用方式
GB/T 7714
Huang, Leen,Zhou, Keying,Chen, Siyang,et al. Automatic detection of epilepsy from EEGs using a temporal convolutional network with a self-attention layer[J]. BIOMEDICAL ENGINEERING ONLINE,2024,23(1).
APA
Huang, Leen,Zhou, Keying,Chen, Siyang,Chen, Yanzhao,&Zhang, Jinxin.(2024).Automatic detection of epilepsy from EEGs using a temporal convolutional network with a self-attention layer.BIOMEDICAL ENGINEERING ONLINE,23(1).
MLA
Huang, Leen,et al."Automatic detection of epilepsy from EEGs using a temporal convolutional network with a self-attention layer".BIOMEDICAL ENGINEERING ONLINE 23.1(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Huang, Leen]的文章
[Zhou, Keying]的文章
[Chen, Siyang]的文章
百度学术
百度学术中相似的文章
[Huang, Leen]的文章
[Zhou, Keying]的文章
[Chen, Siyang]的文章
必应学术
必应学术中相似的文章
[Huang, Leen]的文章
[Zhou, Keying]的文章
[Chen, Siyang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。