题名 | Near-Surface Rayleigh Wave Dispersion Curve Inversion Algorithms: A Comprehensive Comparison |
作者 | |
通讯作者 | Han, Peng |
发表日期 | 2024-06-01
|
DOI | |
发表期刊 | |
ISSN | 0169-3298
|
EISSN | 1573-0956
|
卷号 | 45期号:3 |
摘要 | Rayleigh wave exploration is a powerful method for estimating near-surface shear-wave (S-wave) velocities, providing valuable insights into the stiffness properties of subsurface materials inside the Earth. The dispersion curve inversion of Rayleigh wave corresponds to the optimization process of searching for the optimal solutions of earth model parameters based on the measured dispersion curves. At present, diversified inversion algorithms have been introduced into the process of Rayleigh wave inversion. However, limited studies have been conducted to uncover the variations in inversion performance among commonly used inversion algorithms. To obtain a comprehensive understanding of the optimization performance of these inversion algorithms, we systematically investigate and quantitatively assess the inversion performance of two bionic algorithms, two probabilistic algorithms, a gradient-based algorithm, and two neural network algorithms. The evaluation indices include the computational cost, accuracy, stability, generalization ability, noise effects, and field data processing capability. It is found that the Bound-constrained limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS-B) algorithm and the broad learning (BL) network have the lowest computational cost among candidate algorithms. Furthermore, the transitional Markov Chain Monte Carlo algorithm, deep learning (DL) network, and BL network outperform the other four algorithms regarding accuracy, stability, resistance to noise effects, and capability to process field data. The DL and BL networks demonstrate the highest level of generalization compared to the other algorithms. The comparison results reveal the variations in candidate algorithms for the inversion task, causing a clear understanding of the inversion performance of candidate algorithms. This study can promote the S-wave velocity estimation by Rayleigh wave inversion. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
资助项目 | Talent Launch Project of Chengdu University of Information Technology["KYTZ2023035","KYTZ202220"]
; Guangdong Provincial Key Laboratory of Geophysical High-resolution Imaging Technology[2022B1212010002]
; Research Project on Disciplinary Development Strategy, Academic Divisions of the Chinese Academy of Sciences["XK2018DXA001","XK2018DXC003"]
; null[2023YFE0101800]
|
WOS研究方向 | Geochemistry & Geophysics
|
WOS类目 | Geochemistry & Geophysics
|
WOS记录号 | WOS:001228560700002
|
出版者 | |
ESI学科分类 | GEOSCIENCES
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:1
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/788343 |
专题 | 理学院_地球与空间科学系 南方科技大学 |
作者单位 | 1.Chengdu Univ Informat Technol, Sch Atmospher Sci, Plateau Atmosphere & Environm Key Lab Sichuan Prov, Chengdu 610225, Peoples R China 2.Southern Univ Sci & Technol, Shenzhen Key Lab Deep Offshore Oil & Gas Explorat, Shenzhen 518055, Peoples R China 3.Southern Univ Sci & Technol, Guangdong Prov Key Lab Geophys High Resolut Imagin, Shenzhen 518055, Peoples R China 4.Southern Univ Sci & Technol, Dept Earth & Space Sci, Shenzhen 518055, Peoples R China |
通讯作者单位 | 南方科技大学; 地球与空间科学系 |
推荐引用方式 GB/T 7714 |
Yang, Xiao-Hui,Zhou, Yuanyuan,Han, Peng,et al. Near-Surface Rayleigh Wave Dispersion Curve Inversion Algorithms: A Comprehensive Comparison[J]. SURVEYS IN GEOPHYSICS,2024,45(3).
|
APA |
Yang, Xiao-Hui,Zhou, Yuanyuan,Han, Peng,Feng, Xuping,&Chen, Xiaofei.(2024).Near-Surface Rayleigh Wave Dispersion Curve Inversion Algorithms: A Comprehensive Comparison.SURVEYS IN GEOPHYSICS,45(3).
|
MLA |
Yang, Xiao-Hui,et al."Near-Surface Rayleigh Wave Dispersion Curve Inversion Algorithms: A Comprehensive Comparison".SURVEYS IN GEOPHYSICS 45.3(2024).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论