中文版 | English
题名

Near-Surface Rayleigh Wave Dispersion Curve Inversion Algorithms: A Comprehensive Comparison

作者
通讯作者Han, Peng
发表日期
2024-06-01
DOI
发表期刊
ISSN
0169-3298
EISSN
1573-0956
卷号45期号:3
摘要
Rayleigh wave exploration is a powerful method for estimating near-surface shear-wave (S-wave) velocities, providing valuable insights into the stiffness properties of subsurface materials inside the Earth. The dispersion curve inversion of Rayleigh wave corresponds to the optimization process of searching for the optimal solutions of earth model parameters based on the measured dispersion curves. At present, diversified inversion algorithms have been introduced into the process of Rayleigh wave inversion. However, limited studies have been conducted to uncover the variations in inversion performance among commonly used inversion algorithms. To obtain a comprehensive understanding of the optimization performance of these inversion algorithms, we systematically investigate and quantitatively assess the inversion performance of two bionic algorithms, two probabilistic algorithms, a gradient-based algorithm, and two neural network algorithms. The evaluation indices include the computational cost, accuracy, stability, generalization ability, noise effects, and field data processing capability. It is found that the Bound-constrained limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS-B) algorithm and the broad learning (BL) network have the lowest computational cost among candidate algorithms. Furthermore, the transitional Markov Chain Monte Carlo algorithm, deep learning (DL) network, and BL network outperform the other four algorithms regarding accuracy, stability, resistance to noise effects, and capability to process field data. The DL and BL networks demonstrate the highest level of generalization compared to the other algorithms. The comparison results reveal the variations in candidate algorithms for the inversion task, causing a clear understanding of the inversion performance of candidate algorithms. This study can promote the S-wave velocity estimation by Rayleigh wave inversion.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
Talent Launch Project of Chengdu University of Information Technology["KYTZ2023035","KYTZ202220"] ; Guangdong Provincial Key Laboratory of Geophysical High-resolution Imaging Technology[2022B1212010002] ; Research Project on Disciplinary Development Strategy, Academic Divisions of the Chinese Academy of Sciences["XK2018DXA001","XK2018DXC003"] ; null[2023YFE0101800]
WOS研究方向
Geochemistry & Geophysics
WOS类目
Geochemistry & Geophysics
WOS记录号
WOS:001228560700002
出版者
ESI学科分类
GEOSCIENCES
来源库
Web of Science
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/788343
专题理学院_地球与空间科学系
南方科技大学
作者单位
1.Chengdu Univ Informat Technol, Sch Atmospher Sci, Plateau Atmosphere & Environm Key Lab Sichuan Prov, Chengdu 610225, Peoples R China
2.Southern Univ Sci & Technol, Shenzhen Key Lab Deep Offshore Oil & Gas Explorat, Shenzhen 518055, Peoples R China
3.Southern Univ Sci & Technol, Guangdong Prov Key Lab Geophys High Resolut Imagin, Shenzhen 518055, Peoples R China
4.Southern Univ Sci & Technol, Dept Earth & Space Sci, Shenzhen 518055, Peoples R China
通讯作者单位南方科技大学;  地球与空间科学系
推荐引用方式
GB/T 7714
Yang, Xiao-Hui,Zhou, Yuanyuan,Han, Peng,et al. Near-Surface Rayleigh Wave Dispersion Curve Inversion Algorithms: A Comprehensive Comparison[J]. SURVEYS IN GEOPHYSICS,2024,45(3).
APA
Yang, Xiao-Hui,Zhou, Yuanyuan,Han, Peng,Feng, Xuping,&Chen, Xiaofei.(2024).Near-Surface Rayleigh Wave Dispersion Curve Inversion Algorithms: A Comprehensive Comparison.SURVEYS IN GEOPHYSICS,45(3).
MLA
Yang, Xiao-Hui,et al."Near-Surface Rayleigh Wave Dispersion Curve Inversion Algorithms: A Comprehensive Comparison".SURVEYS IN GEOPHYSICS 45.3(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yang, Xiao-Hui]的文章
[Zhou, Yuanyuan]的文章
[Han, Peng]的文章
百度学术
百度学术中相似的文章
[Yang, Xiao-Hui]的文章
[Zhou, Yuanyuan]的文章
[Han, Peng]的文章
必应学术
必应学术中相似的文章
[Yang, Xiao-Hui]的文章
[Zhou, Yuanyuan]的文章
[Han, Peng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。