题名 | Gradient-based algorithms for multi-objective bi-level optimization |
作者 | |
通讯作者 | Zhang, Jin |
发表日期 | 2024-05-01
|
DOI | |
发表期刊 | |
ISSN | 1674-7283
|
EISSN | 1869-1862
|
摘要 | Multi-objective bi-level optimization (MOBLO) addresses nested multi-objective optimization problems common in a range of applications. However, its multi-objective and hierarchical bi-level nature makes it notably complex. Gradient-based MOBLO algorithms have recently grown in popularity, as they effectively solve crucial machine learning problems like meta-learning, neural architecture search, and reinforcement learning. Unfortunately, these algorithms depend on solving a sequence of approximation subproblems with high accuracy, resulting in adverse time and memory complexity that lowers their numerical efficiency. To address this issue, we propose a gradient-based algorithm for MOBLO, called gMOBA, which has fewer hyperparameters to tune, making it both simple and efficient. Additionally, we demonstrate the theoretical validity by accomplishing the desirable Pareto stationarity. Numerical experiments confirm the practical efficiency of the proposed method and verify the theoretical results. To accelerate the convergence of gMOBA, we introduce a beneficial L2O (learning to optimize) neural network (called L2O-gMOBA) implemented as the initialization phase of our gMOBA algorithm. Comparative results of numerical experiments are presented to illustrate the performance of L2O-gMOBA. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
资助项目 | Major Program of National Natural Science Foundation of China[
|
WOS研究方向 | Mathematics
|
WOS类目 | Mathematics, Applied
; Mathematics
|
WOS记录号 | WOS:001226597600003
|
出版者 | |
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:1
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/788358 |
专题 | 理学院_数学系 |
作者单位 | 1.Natl Ctr Appl Math Chongqing, Chongqing 401331, Peoples R China 2.Chongqing Normal Univ, Sch Math Sci, Chongqing 401331, Peoples R China 3.Southern Univ Sci & Technol, Dept Math, Shenzhen 518055, Peoples R China 4.Natl Ctr Appl Math Shenzhen, Shenzhen 518000, Peoples R China 5.Univ Victoria, Dept Math & Stat, Victoria, BC V8W 2Y2, Canada |
通讯作者单位 | 数学系 |
推荐引用方式 GB/T 7714 |
Yang, Xinmin,Yao, Wei,Yin, Haian,et al. Gradient-based algorithms for multi-objective bi-level optimization[J]. SCIENCE CHINA-MATHEMATICS,2024.
|
APA |
Yang, Xinmin,Yao, Wei,Yin, Haian,Zeng, Shangzhi,&Zhang, Jin.(2024).Gradient-based algorithms for multi-objective bi-level optimization.SCIENCE CHINA-MATHEMATICS.
|
MLA |
Yang, Xinmin,et al."Gradient-based algorithms for multi-objective bi-level optimization".SCIENCE CHINA-MATHEMATICS (2024).
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Gradient-based algor(434KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论