中文版 | English
题名

Gradient-based algorithms for multi-objective bi-level optimization

作者
通讯作者Zhang, Jin
发表日期
2024-05-01
DOI
发表期刊
ISSN
1674-7283
EISSN
1869-1862
摘要

Multi-objective bi-level optimization (MOBLO) addresses nested multi-objective optimization problems common in a range of applications. However, its multi-objective and hierarchical bi-level nature makes it notably complex. Gradient-based MOBLO algorithms have recently grown in popularity, as they effectively solve crucial machine learning problems like meta-learning, neural architecture search, and reinforcement learning. Unfortunately, these algorithms depend on solving a sequence of approximation subproblems with high accuracy, resulting in adverse time and memory complexity that lowers their numerical efficiency. To address this issue, we propose a gradient-based algorithm for MOBLO, called gMOBA, which has fewer hyperparameters to tune, making it both simple and efficient. Additionally, we demonstrate the theoretical validity by accomplishing the desirable Pareto stationarity. Numerical experiments confirm the practical efficiency of the proposed method and verify the theoretical results. To accelerate the convergence of gMOBA, we introduce a beneficial L2O (learning to optimize) neural network (called L2O-gMOBA) implemented as the initialization phase of our gMOBA algorithm. Comparative results of numerical experiments are presented to illustrate the performance of L2O-gMOBA.

关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
通讯
资助项目
Major Program of National Natural Science Foundation of China[
WOS研究方向
Mathematics
WOS类目
Mathematics, Applied ; Mathematics
WOS记录号
WOS:001226597600003
出版者
来源库
Web of Science
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/788358
专题理学院_数学系
作者单位
1.Natl Ctr Appl Math Chongqing, Chongqing 401331, Peoples R China
2.Chongqing Normal Univ, Sch Math Sci, Chongqing 401331, Peoples R China
3.Southern Univ Sci & Technol, Dept Math, Shenzhen 518055, Peoples R China
4.Natl Ctr Appl Math Shenzhen, Shenzhen 518000, Peoples R China
5.Univ Victoria, Dept Math & Stat, Victoria, BC V8W 2Y2, Canada
通讯作者单位数学系
推荐引用方式
GB/T 7714
Yang, Xinmin,Yao, Wei,Yin, Haian,et al. Gradient-based algorithms for multi-objective bi-level optimization[J]. SCIENCE CHINA-MATHEMATICS,2024.
APA
Yang, Xinmin,Yao, Wei,Yin, Haian,Zeng, Shangzhi,&Zhang, Jin.(2024).Gradient-based algorithms for multi-objective bi-level optimization.SCIENCE CHINA-MATHEMATICS.
MLA
Yang, Xinmin,et al."Gradient-based algorithms for multi-objective bi-level optimization".SCIENCE CHINA-MATHEMATICS (2024).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Gradient-based algor(434KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yang, Xinmin]的文章
[Yao, Wei]的文章
[Yin, Haian]的文章
百度学术
百度学术中相似的文章
[Yang, Xinmin]的文章
[Yao, Wei]的文章
[Yin, Haian]的文章
必应学术
必应学术中相似的文章
[Yang, Xinmin]的文章
[Yao, Wei]的文章
[Yin, Haian]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。