中文版 | English
题名

Unveiling the molecular complexity of proliferative diabetic retinopathy through scRNA-seq, AlphaFold 2, and machine learning

作者
通讯作者Pu, Zuhui; Yang, Ming-ming
发表日期
2024-05-10
DOI
发表期刊
ISSN
1664-2392
卷号15
摘要
Background Proliferative diabetic retinopathy (PDR), a major cause of blindness, is characterized by complex pathogenesis. This study integrates single-cell RNA sequencing (scRNA-seq), Non-negative Matrix Factorization (NMF), machine learning, and AlphaFold 2 methods to explore the molecular level of PDR.Methods We analyzed scRNA-seq data from PDR patients and healthy controls to identify distinct cellular subtypes and gene expression patterns. NMF was used to define specific transcriptional programs in PDR. The oxidative stress-related genes (ORGs) identified within Meta-Program 1 were utilized to construct a predictive model using twelve machine learning algorithms. Furthermore, we employed AlphaFold 2 for the prediction of protein structures, complementing this with molecular docking to validate the structural foundation of potential therapeutic targets. We also analyzed protein-protein interaction (PPI) networks and the interplay among key ORGs.Results Our scRNA-seq analysis revealed five major cell types and 14 subcell types in PDR patients, with significant differences in gene expression compared to those in controls. We identified three key meta-programs underscoring the role of microglia in the pathogenesis of PDR. Three critical ORGs (ALKBH1, PSIP1, and ATP13A2) were identified, with the best-performing predictive model demonstrating high accuracy (AUC of 0.989 in the training cohort and 0.833 in the validation cohort). Moreover, AlphaFold 2 predictions combined with molecular docking revealed that resveratrol has a strong affinity for ALKBH1, indicating its potential as a targeted therapeutic agent. PPI network analysis, revealed a complex network of interactions among the hub ORGs and other genes, suggesting a collective role in PDR pathogenesis.Conclusion This study provides insights into the cellular and molecular aspects of PDR, identifying potential biomarkers and therapeutic targets using advanced technological approaches.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
通讯
资助项目
Shenzhen Science and Technology Program["JCYJ20220818102603007","GCZX2015043017281705"] ; General Project of the Shenzhen Natural Science Foundation["JCYJ20210324113808023","JCYJ20220530152813030"]
WOS研究方向
Endocrinology & Metabolism
WOS类目
Endocrinology & Metabolism
WOS记录号
WOS:001229865200001
出版者
来源库
Web of Science
引用统计
被引频次[WOS]:3
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/788367
专题南方科技大学第一附属医院
作者单位
1.Jinan Univ, Shenzhen Peoples Hosp, Clin Med Coll 2, Dept Endocrinol, Shenzhen, Peoples R China
2.Southern Univ Sci & Technol, Affiliated Hosp 1, Shenzhen, Peoples R China
3.Jinan Univ, Shenzhen Peoples Hosp, Clin Med Coll 2, Dept Ophthalmol, Shenzhen, Peoples R China
4.Shenzhen Univ, Affiliated Hosp 1, Shenzhen Peoples Hosp 2, Shenzhen Inst Translat Med,Imaging Dept, Shenzhen, Peoples R China
5.Shenzhen Inst Translat Med, MetaLife Ctr, Shenzhen, Guangdong, Peoples R China
第一作者单位南方科技大学第一附属医院
通讯作者单位南方科技大学第一附属医院
推荐引用方式
GB/T 7714
Wang, Jun,Sun, Hongyan,Mou, Lisha,et al. Unveiling the molecular complexity of proliferative diabetic retinopathy through scRNA-seq, AlphaFold 2, and machine learning[J]. FRONTIERS IN ENDOCRINOLOGY,2024,15.
APA
Wang, Jun.,Sun, Hongyan.,Mou, Lisha.,Lu, Ying.,Wu, Zijing.,...&Yang, Ming-ming.(2024).Unveiling the molecular complexity of proliferative diabetic retinopathy through scRNA-seq, AlphaFold 2, and machine learning.FRONTIERS IN ENDOCRINOLOGY,15.
MLA
Wang, Jun,et al."Unveiling the molecular complexity of proliferative diabetic retinopathy through scRNA-seq, AlphaFold 2, and machine learning".FRONTIERS IN ENDOCRINOLOGY 15(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang, Jun]的文章
[Sun, Hongyan]的文章
[Mou, Lisha]的文章
百度学术
百度学术中相似的文章
[Wang, Jun]的文章
[Sun, Hongyan]的文章
[Mou, Lisha]的文章
必应学术
必应学术中相似的文章
[Wang, Jun]的文章
[Sun, Hongyan]的文章
[Mou, Lisha]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。