题名 | Machine learning aided understanding and manipulating thermal transport in amorphous networks |
作者 | |
通讯作者 | Shen, Xiangying |
发表日期 | 2024-05-21
|
DOI | |
发表期刊 | |
ISSN | 0021-8979
|
EISSN | 1089-7550
|
卷号 | 135期号:19 |
摘要 | Thermal transport plays a pivotal role across diverse disciplines, yet the intricate relationship between amorphous network structures and thermal conductance properties remains elusive due to the absence of a reliable and comprehensive network's dataset to be investigated. In this study, we have created a dataset comprising multiple amorphous network structures of varying sizes, generated through a combination of the node disturbance method and Delaunay triangulation, to fine-tune an initially random network toward both increased and decreased thermal conductance C. The tuning process is guided by the simulated annealing algorithm. Our findings unveil that C is inversely dependent on the normalized average shortest distance L( n o r m )connecting heat source nodes and sink nodes, which is determined by the network topological structure. Intuitively, the amorphous network with increased C is associated with an increased number of bonds oriented along the thermal transport direction, which shortens the heat transfer distance from the source to sink node. Conversely, thermal transport encounters impedance with an augmented number of bonds oriented perpendicular to the thermal transport direction, which is demonstrated by the increased L (n o r m). This relationship can be described by a power law C = L ( alpha)(n o r m), applicable to the diverse-sized amorphous networks we have investigated. |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | National Natural Science Foundation of China10.13039/501100001809["12205138","52250191"]
; National Natural Science Foundation of China (NNSFC)[JCYJ20220530113206015]
|
WOS研究方向 | Physics
|
WOS类目 | Physics, Applied
|
WOS记录号 | WOS:001224530600003
|
出版者 | |
ESI学科分类 | PHYSICS
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:2
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/788413 |
专题 | 理学院_物理系 工学院_材料科学与工程系 工学院_深港微电子学院 |
作者单位 | 1.Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Peoples R China 2.Southern Univ Sci & Technol, Dept Mat Sci & Engn, Shenzhen 518055, Peoples R China 3.Southern Univ Sci & Technol, Sch Microelect, Shenzhen 518055, Peoples R China 4.Shenzhen Int Quantum Acad, Shenzhen 518017, Peoples R China |
第一作者单位 | 物理系 |
通讯作者单位 | 物理系 |
第一作者的第一单位 | 物理系 |
推荐引用方式 GB/T 7714 |
Zhu, Changliang,Luo, Tianlin,Li, Baowen,et al. Machine learning aided understanding and manipulating thermal transport in amorphous networks[J]. JOURNAL OF APPLIED PHYSICS,2024,135(19).
|
APA |
Zhu, Changliang,Luo, Tianlin,Li, Baowen,Zhu, Guimei,&Shen, Xiangying.(2024).Machine learning aided understanding and manipulating thermal transport in amorphous networks.JOURNAL OF APPLIED PHYSICS,135(19).
|
MLA |
Zhu, Changliang,et al."Machine learning aided understanding and manipulating thermal transport in amorphous networks".JOURNAL OF APPLIED PHYSICS 135.19(2024).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论