中文版 | English
题名

Machine learning aided understanding and manipulating thermal transport in amorphous networks

作者
通讯作者Shen, Xiangying
发表日期
2024-05-21
DOI
发表期刊
ISSN
0021-8979
EISSN
1089-7550
卷号135期号:19
摘要
Thermal transport plays a pivotal role across diverse disciplines, yet the intricate relationship between amorphous network structures and thermal conductance properties remains elusive due to the absence of a reliable and comprehensive network's dataset to be investigated. In this study, we have created a dataset comprising multiple amorphous network structures of varying sizes, generated through a combination of the node disturbance method and Delaunay triangulation, to fine-tune an initially random network toward both increased and decreased thermal conductance C. The tuning process is guided by the simulated annealing algorithm. Our findings unveil that C is inversely dependent on the normalized average shortest distance L( n o r m )connecting heat source nodes and sink nodes, which is determined by the network topological structure. Intuitively, the amorphous network with increased C is associated with an increased number of bonds oriented along the thermal transport direction, which shortens the heat transfer distance from the source to sink node. Conversely, thermal transport encounters impedance with an augmented number of bonds oriented perpendicular to the thermal transport direction, which is demonstrated by the increased L (n o r m). This relationship can be described by a power law C = L ( alpha)(n o r m), applicable to the diverse-sized amorphous networks we have investigated.
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
National Natural Science Foundation of China10.13039/501100001809["12205138","52250191"] ; National Natural Science Foundation of China (NNSFC)[JCYJ20220530113206015]
WOS研究方向
Physics
WOS类目
Physics, Applied
WOS记录号
WOS:001224530600003
出版者
ESI学科分类
PHYSICS
来源库
Web of Science
引用统计
被引频次[WOS]:2
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/788413
专题理学院_物理系
工学院_材料科学与工程系
工学院_深港微电子学院
作者单位
1.Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Peoples R China
2.Southern Univ Sci & Technol, Dept Mat Sci & Engn, Shenzhen 518055, Peoples R China
3.Southern Univ Sci & Technol, Sch Microelect, Shenzhen 518055, Peoples R China
4.Shenzhen Int Quantum Acad, Shenzhen 518017, Peoples R China
第一作者单位物理系
通讯作者单位物理系
第一作者的第一单位物理系
推荐引用方式
GB/T 7714
Zhu, Changliang,Luo, Tianlin,Li, Baowen,et al. Machine learning aided understanding and manipulating thermal transport in amorphous networks[J]. JOURNAL OF APPLIED PHYSICS,2024,135(19).
APA
Zhu, Changliang,Luo, Tianlin,Li, Baowen,Zhu, Guimei,&Shen, Xiangying.(2024).Machine learning aided understanding and manipulating thermal transport in amorphous networks.JOURNAL OF APPLIED PHYSICS,135(19).
MLA
Zhu, Changliang,et al."Machine learning aided understanding and manipulating thermal transport in amorphous networks".JOURNAL OF APPLIED PHYSICS 135.19(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhu, Changliang]的文章
[Luo, Tianlin]的文章
[Li, Baowen]的文章
百度学术
百度学术中相似的文章
[Zhu, Changliang]的文章
[Luo, Tianlin]的文章
[Li, Baowen]的文章
必应学术
必应学术中相似的文章
[Zhu, Changliang]的文章
[Luo, Tianlin]的文章
[Li, Baowen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。