中文版 | English
题名

Integration of MoS2 Memtransistor Devices and Analogue Circuits for Sensor Fusion in Autonomous Vehicle Target Localization

作者
通讯作者Bao, Wenzhong; Zhou, Peng; Feng, Xuewei
发表日期
2024-05-16
DOI
发表期刊
ISSN
1936-0851
EISSN
1936-086X
卷号18期号:21
摘要
In contemporary autonomous driving systems relying on sensor fusion, traditional digital processors encounter challenges associated with analogue-to-digital conversion and iterative vector-matrix operations, which are encumbered by limitations in terms of response time and energy consumption. In this study, we present an analogue Kalman filter circuit based on molybdenum disulfide (MoS2) memtransistor, designed to accelerate sensor fusion for precise localization in autonomous vehicle applications. The nonvolatile memory characteristics of the memtransistor allow for the storage of a fixed Kalman gain, which eliminates the data convergence and thus accelerates the processing speeds. Additionally, the modulation of multiple conductance states by the gate terminal enables fast adaptability to diverse autonomous driving scenarios by tuning multiple Kalman filter gains. Our proposed analogue Kalman filter circuit accurately estimates the position coordinates of target vehicles by fusing sensor data from light detection and ranging (LiDAR), millimeter-wave radar (Radar), and camera, and it successfully solves real-word problems in a signal-free crossroad intersection. Notably, our system achieves a 1000-fold improvement in energy efficiency compared to that of digital circuits. This work underscores the viability of a memtransistor for achieving fast, energy-efficient real-time sensing, and continuous signal processing in advanced sensor fusion technology.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
National Natural Science Foundation of China["62304132","62174074"] ; National Natural Science Foundation of China[JCYJ20220530115014032] ; Shenzhen Fundamental Research Program[2021QN02 X 362] ; Zhujiang Young Talent Program[2021KCXTD012] ; Guangdong Provincial Department of Education Innovation Team Program["21TQ1400100","23TQ008"] ; Shanghai Pilot Program for Basic Research-Fudan University[2021YFA1200500]
WOS研究方向
Chemistry ; Science & Technology - Other Topics ; Materials Science
WOS类目
Chemistry, Multidisciplinary ; Chemistry, Physical ; Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary
WOS记录号
WOS:001225921800001
出版者
来源库
Web of Science
引用统计
被引频次[WOS]:2
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/788419
专题工学院_深港微电子学院
作者单位
1.ShaoXin Chip Lab, Shaoxing 312000, Peoples R China
2.Shanghai Jiao Tong Univ, Sch Mech Engn, Shanghai 200240, Peoples R China
3.Southern Univ Sci & Technol, Sch Microelect, Shenzhen 518055, Peoples R China
4.Fudan Univ, Sch Microelect, Shanghai 200433, Peoples R China
推荐引用方式
GB/T 7714
Tan, Tian,Guo, Haoyue,Li, Yida,et al. Integration of MoS2 Memtransistor Devices and Analogue Circuits for Sensor Fusion in Autonomous Vehicle Target Localization[J]. ACS NANO,2024,18(21).
APA
Tan, Tian.,Guo, Haoyue.,Li, Yida.,Wang, Yafei.,Cai, Weiwei.,...&Feng, Xuewei.(2024).Integration of MoS2 Memtransistor Devices and Analogue Circuits for Sensor Fusion in Autonomous Vehicle Target Localization.ACS NANO,18(21).
MLA
Tan, Tian,et al."Integration of MoS2 Memtransistor Devices and Analogue Circuits for Sensor Fusion in Autonomous Vehicle Target Localization".ACS NANO 18.21(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Tan, Tian]的文章
[Guo, Haoyue]的文章
[Li, Yida]的文章
百度学术
百度学术中相似的文章
[Tan, Tian]的文章
[Guo, Haoyue]的文章
[Li, Yida]的文章
必应学术
必应学术中相似的文章
[Tan, Tian]的文章
[Guo, Haoyue]的文章
[Li, Yida]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。