中文版 | English
题名

Predictive Modeling Using a Composite Index of Sleep and Cognition in the Alzheimer's Continuum: A Decade-Long Historical Cohort Study

作者
通讯作者Zhang, Wei; Han, Ying
共同第一作者Yu, Xianfeng; Deng, Shuqing; Liu, Junxin
发表日期
2024
DOI
发表期刊
EISSN
2542-4823
卷号8期号:1
摘要

["Background: Sleep disturbances frequently affect Alzheimer's disease (AD), with up to 65% patients reporting sleep-related issues that may manifest up to a decade before AD symptoms.","Objective: To construct a nomogram that synthesizes sleep quality and cognitive performance for predicting cognitive impairment (CI) conversion outcomes.","Methods: Using scores from three well-established sleep assessment tools, Pittsburg Sleep Quality Index, REM Sleep Behavior Disorder Screening Questionnaire, and Epworth Sleepiness Scale, we created the Sleep Composite Index (SCI), providing a comprehensive snapshot of an individual's sleep status. Initially, a CI conversion prediction model was formed via COX regression, fine-tuned by bidirectional elimination. Subsequently, an optimized prediction model through COX regression, depicted as a nomogram, offering predictions for CI development in 5, 8, and 12 years among cognitively unimpaired (CU) individuals.","Results: After excluding CI patients at baseline, our study included 816 participants with complete baseline and follow-up data. The CU group had a mean age of 66.1 +/- 6.7 years, with 36.37% males, while the CI group had an average age of 70.3 +/- 9.0 years, with 39.20% males. The final model incorporated glial fibrillary acidic protein, Verbal Fluency Test and SCI, and an AUC of 0.8773 (0.792-0.963).","Conclusions: In conclusion, the sleep-cognition nomogram we developed could successfully predict the risk of converting to CI in elderly participants and could potentially guide the design of interventions for rehabilitation and/or cognitive enhancement to improve the living quality for healthy older adults, detect at-risk individuals, and even slow down the progression of AD."]

关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
共同第一 ; 其他
资助项目
National Natural Science Foundation of China[
WOS研究方向
Neurosciences & Neurology
WOS类目
Neurosciences
WOS记录号
WOS:001208806000003
出版者
来源库
Web of Science
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/788488
专题南方科技大学医学院_公共卫生及应急管理学院
作者单位
1.Capital Med Univ, Dept Neurol, Xuanwu Hosp, Beijing 100053, Peoples R China
2.Brandeis Univ, Dept Psychol, Waltham, MA USA
3.Southern Univ Sci & Technol, Sch Publ Hlth & Emergency Management, Shenzhen, Peoples R China
4.Hainan Univ, Sch Biomed Engn, Haikou, Hainan, Peoples R China
5.Anhui Med Univ, Dept Rehabil Med, Affiliated Hosp 1, Hefei, Anhui, Peoples R China
6.Beijing Inst Brain Disorders, Ctr Alzheimers Dis, Beijing, Peoples R China
7.Natl Clin Res Ctr Geriatr Disorders, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Yu, Xianfeng,Deng, Shuqing,Liu, Junxin,et al. Predictive Modeling Using a Composite Index of Sleep and Cognition in the Alzheimer's Continuum: A Decade-Long Historical Cohort Study[J]. JOURNAL OF ALZHEIMERS DISEASE REPORTS,2024,8(1).
APA
Yu, Xianfeng.,Deng, Shuqing.,Liu, Junxin.,Zhang, Mingkai.,Zhang, Liang.,...&Han, Ying.(2024).Predictive Modeling Using a Composite Index of Sleep and Cognition in the Alzheimer's Continuum: A Decade-Long Historical Cohort Study.JOURNAL OF ALZHEIMERS DISEASE REPORTS,8(1).
MLA
Yu, Xianfeng,et al."Predictive Modeling Using a Composite Index of Sleep and Cognition in the Alzheimer's Continuum: A Decade-Long Historical Cohort Study".JOURNAL OF ALZHEIMERS DISEASE REPORTS 8.1(2024).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Predictive Modeling (486KB)----开放获取--浏览
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yu, Xianfeng]的文章
[Deng, Shuqing]的文章
[Liu, Junxin]的文章
百度学术
百度学术中相似的文章
[Yu, Xianfeng]的文章
[Deng, Shuqing]的文章
[Liu, Junxin]的文章
必应学术
必应学术中相似的文章
[Yu, Xianfeng]的文章
[Deng, Shuqing]的文章
[Liu, Junxin]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Predictive Modeling Using a Composite-见刊.pdf
格式: Adobe PDF
文件名: Predictive Modeling Using a Composite-见刊.pdf
格式: Adobe PDF
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。