中文版 | English
题名

A deep learning-based calculation system for plaque stenosis severity on common carotid artery of ultrasound images

作者
通讯作者Xu, Jinfeng; Dong, Fajin
发表日期
2024-04-01
DOI
发表期刊
ISSN
1708-5381
EISSN
1708-539X
摘要
Objectives Assessment of plaque stenosis severity allows better management of carotid source of stroke. Our objective is to create a deep learning (DL) model to segment carotid intima-media thickness and plaque and further automatically calculate plaque stenosis severity on common carotid artery (CCA) transverse section ultrasound images.Methods Three hundred and ninety images from 376 individuals were used to train (235/390, 60%), validate (39/390, 10%), and test (116/390, 30%) on a newly proposed CANet model. We also evaluated the model on an external test set of 115 individuals with 122 images acquired from another hospital. Comparative studies were conducted between our CANet model with four state-of-the-art DL models and two experienced sonographers to re-evaluate the present model's performance.Results On the internal test set, our CANet model outperformed the four comparative models with Dice values of 95.22% versus 90.15%, 87.48%, 90.22%, and 91.56% on lumen-intima (LI) borders and 96.27% versus 91.40%, 88.94%, 91.19%, and 92.88% on media-adventitia (MA) borders. On the external test set, our model still produced excellent results with a Dice value of 92.41%. Good consistency of stenosis severity calculation was observed between CANet model and experienced sonographers, with Intraclass Correlation Coefficient (ICC) of 0.927 and 0.702, Pearson's Correlation Coefficient of 0.928 and 0.704 on internal and external test set, respectively.Conclusions Our CANet model achieved excellent performance in the segmentation of carotid IMT and plaques as well as automated calculation of stenosis severity.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
第一 ; 通讯
资助项目
National Key Research and Development Program of China[2022YFC3602400] ; Clinical Scientist Training Program of Shenzhen People's Hospital[SYWGSCGZH202202]
WOS研究方向
Cardiovascular System & Cardiology
WOS类目
Peripheral Vascular Disease
WOS记录号
WOS:001207418800001
出版者
来源库
Web of Science
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/788570
专题南方科技大学第一附属医院
作者单位
1.Jinan Univ, Southern Univ Sci & Technol,Clin Coll 2, Shenzhen Peoples Hosp,Affiliated Hosp 1, Dept Ultrasound, 1017 Rd Dongmen North,St Cuizhu, Shenzhen 518020, Peoples R China
2.Illuminate LLC, Shenzhen, Peoples R China
3.Microport Prophecy, Shanghai, Peoples R China
第一作者单位南方科技大学第一附属医院
通讯作者单位南方科技大学第一附属医院
第一作者的第一单位南方科技大学第一附属医院
推荐引用方式
GB/T 7714
Liu, Mengmeng,Gao, Wenjing,Song, Di,et al. A deep learning-based calculation system for plaque stenosis severity on common carotid artery of ultrasound images[J]. VASCULAR,2024.
APA
Liu, Mengmeng.,Gao, Wenjing.,Song, Di.,Dong, Yinghui.,Hong, Shaofu.,...&Dong, Fajin.(2024).A deep learning-based calculation system for plaque stenosis severity on common carotid artery of ultrasound images.VASCULAR.
MLA
Liu, Mengmeng,et al."A deep learning-based calculation system for plaque stenosis severity on common carotid artery of ultrasound images".VASCULAR (2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Liu, Mengmeng]的文章
[Gao, Wenjing]的文章
[Song, Di]的文章
百度学术
百度学术中相似的文章
[Liu, Mengmeng]的文章
[Gao, Wenjing]的文章
[Song, Di]的文章
必应学术
必应学术中相似的文章
[Liu, Mengmeng]的文章
[Gao, Wenjing]的文章
[Song, Di]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。