中文版 | English
题名

Autonomous Earthquake Location via Deep Reinforcement Learning

作者
通讯作者Zhang, Wei
发表日期
2024
DOI
发表期刊
ISSN
0895-0695
EISSN
1938-2057
卷号95期号:1
摘要
Recent advances in artificial intelligence allow seismologists to upgrade the workflow for locating earthquakes. The standard workflow concatenates a sequence of data processing modules, including event detection, phase picking, association, and event location, with elaborately fine-tuned parameters, lacking automation and convenience. Here, we leverage deep reinforcement learning and develop a state-of-theart earthquake robot (EQBot) to help advance automated earthquake location. The EQBot learns from tremendous trial-and-error explorations, which aims to best align the observed P and S waves, complying with the geophysical principle of gather alignments in source imaging. After training on earthquakes (M >= 2.0) for a decade in the Los Angeles region, it can locate earthquakes directly from waveforms with mean absolute errors of 1.32 km, 1.35 km, and 1.96 km in latitude, longitude, and depth, respectively, closely comparable to the cataloged locations. Moreover, it can automatically implement quality control by examining the alignments of P and S waves. Our study provides a new solution to advance the earthquake location process toward full automation.
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
National Key R&D Program of China[2021YFC3000703-05] ; National Natural Science Foundation of China["42104047","U1901602"] ; Guangdong Provincial Key Laboratory of Geophysical High-resolution Imaging Technology[2022B1212010002] ; Shenzhen Science and Technology Program[KQTD20170810111725321] ; Guangdong Provincial Pearl River Talents Program[2019QN01G801]
WOS研究方向
Geochemistry & Geophysics
WOS类目
Geochemistry & Geophysics
WOS记录号
WOS:001198686600001
出版者
ESI学科分类
GEOSCIENCES
来源库
Web of Science
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/788624
专题理学院_地球与空间科学系
南方科技大学
作者单位
1.Ocean Univ China, Coll Marine Geosci, Key Lab Submarine Geosci & Prospecting Tech, MOE, Qingdao, Peoples R China
2.Southern Univ Sci & Technol, Dept Earth & Space Sci, Shenzhen, Peoples R China
3.Southern Univ Sci & Technol, Guangdong Prov Key Lab Geophys High Resolut Imagin, Shenzhen, Peoples R China
4.Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA USA
5.Univ Sci & Technol China, Dept Geophys, Hefei, Peoples R China
第一作者单位地球与空间科学系;  南方科技大学
通讯作者单位地球与空间科学系;  南方科技大学
推荐引用方式
GB/T 7714
Kuang, Wenhuan,Yuan, Congcong,Zou, Zhihui,et al. Autonomous Earthquake Location via Deep Reinforcement Learning[J]. SEISMOLOGICAL RESEARCH LETTERS,2024,95(1).
APA
Kuang, Wenhuan,Yuan, Congcong,Zou, Zhihui,Zhang, Jie,&Zhang, Wei.(2024).Autonomous Earthquake Location via Deep Reinforcement Learning.SEISMOLOGICAL RESEARCH LETTERS,95(1).
MLA
Kuang, Wenhuan,et al."Autonomous Earthquake Location via Deep Reinforcement Learning".SEISMOLOGICAL RESEARCH LETTERS 95.1(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Kuang, Wenhuan]的文章
[Yuan, Congcong]的文章
[Zou, Zhihui]的文章
百度学术
百度学术中相似的文章
[Kuang, Wenhuan]的文章
[Yuan, Congcong]的文章
[Zou, Zhihui]的文章
必应学术
必应学术中相似的文章
[Kuang, Wenhuan]的文章
[Yuan, Congcong]的文章
[Zou, Zhihui]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。