题名 | Recognition of Human Lower Limb Motion and Muscle Fatigue Status Using a Wearable FES-sEMG System |
作者 | |
通讯作者 | Bai, Ziqian |
发表日期 | 2024-04-01
|
DOI | |
发表期刊 | |
EISSN | 1424-8220
|
卷号 | 24期号:7 |
摘要 | Functional electrical stimulation (FES) devices are widely employed for clinical treatment, rehabilitation, and sports training. However, existing FES devices are inadequate in terms of wearability and cannot recognize a user's intention to move or muscle fatigue. These issues impede the user's ability to incorporate FES devices into their daily life. In response to these issues, this paper introduces a novel wearable FES system based on customized textile electrodes. The system is driven by surface electromyography (sEMG) movement intention. A parallel structured deep learning model based on a wearable FES device is used, which enables the identification of both the type of motion and muscle fatigue status without being affected by electrical stimulation. Five subjects took part in an experiment to test the proposed system, and the results showed that our method achieved a high level of accuracy for lower limb motion recognition and muscle fatigue status detection. The preliminary results presented here prove the effectiveness of the novel wearable FES system in terms of recognizing lower limb motions and muscle fatigue status. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
WOS研究方向 | Chemistry
; Engineering
; Instruments & Instrumentation
|
WOS类目 | Chemistry, Analytical
; Engineering, Electrical & Electronic
; Instruments & Instrumentation
|
WOS记录号 | WOS:001200864400001
|
出版者 | |
ESI学科分类 | CHEMISTRY
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:6
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/788671 |
专题 | 工学院_系统设计与智能制造学院 |
作者单位 | Southern Univ Sci & Technol, Sch Syst Design & Intelligent Mfg, Shenzhen 518055, Peoples R China |
第一作者单位 | 系统设计与智能制造学院 |
通讯作者单位 | 系统设计与智能制造学院 |
第一作者的第一单位 | 系统设计与智能制造学院 |
推荐引用方式 GB/T 7714 |
Zhang, Wenbo,Bai, Ziqian,Yan, Pengfei,et al. Recognition of Human Lower Limb Motion and Muscle Fatigue Status Using a Wearable FES-sEMG System[J]. SENSORS,2024,24(7).
|
APA |
Zhang, Wenbo,Bai, Ziqian,Yan, Pengfei,Liu, Hongwei,&Shao, Li.(2024).Recognition of Human Lower Limb Motion and Muscle Fatigue Status Using a Wearable FES-sEMG System.SENSORS,24(7).
|
MLA |
Zhang, Wenbo,et al."Recognition of Human Lower Limb Motion and Muscle Fatigue Status Using a Wearable FES-sEMG System".SENSORS 24.7(2024).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论