中文版 | English
题名

Deep-DSP: deep convolutional network with double spatial pyramid for tongue image segmentation

作者
通讯作者Lu, Dongxin
发表日期
2024
DOI
发表期刊
ISSN
1758-0366
EISSN
1758-0374
卷号23期号:3
摘要
In traditional Chinese medicine diagnosis, experienced Chinese medicine doctors can understand the potential symptoms of patients by diagnosing their tongue images. With the continuous development of computer science and artificial intelligence, neural networks are gradually being used in the image processing and feature extraction. The intelligent tongue diagnosis combining traditional Chinese medicine with neural networks was constructed to automatically improve the diagnose accuracy. The dataset contains 556 no-background tongue images. The deep convolutional network with double spatial pyramid (Deep-DSP) for tongue segmentation was constructed, in which the spatial pyramid block was embedded into the encoder-decoder architecture. Noteworthy, a novel double spatial pyramid architecture was applied for multiple encoding states feature learning. Experiments showed that the deep-DSP performed more excellently in tongue segmentation and than that of state-of-the-art methods according to the accuracy, precision, recall, harmonic measure and specificity.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一
资助项目
Public Welfare Technology Research Project of Zhejiang Provinces Science Foundation in China. The effect model Construction and 3D visualization of auricular point pivot regulation of brain neural[LGF20F020009] ; Key RD Program of Zhejiang Province. Research on intelligent service technology and equipment of health and elderly care-support the research and application development of medical nursing care robot and elderly care service system of internet hospitals[2020C03107]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods
WOS记录号
WOS:001198771800005
出版者
来源库
Web of Science
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/788696
专题工学院_系统设计与智能制造学院
工学院_机械与能源工程系
作者单位
1.Southern Univ Sci & Technol, Sch Syst Design & Intelligent Mfg, Shenzhen, Peoples R China
2.Hangzhou Normal Univ, Hlth Management Syst Engn Ctr, Sch Publ Hlth, Hangzhou, Peoples R China
3.Southern Univ Sci & Technol, Dept Mech & Energy Engn, Shenzhen, Peoples R China
4.China United Test & Evaluat Qingdao Co Ltd, Qingdao, Peoples R China
5.Qilu Univ Technol, Inst Oceanog Instrumentat, Shandong Acad Sci, Qingdao, Peoples R China
第一作者单位系统设计与智能制造学院
第一作者的第一单位系统设计与智能制造学院
推荐引用方式
GB/T 7714
Chen, Yuhan,Li, Qingfeng,Lu, Dongxin,et al. Deep-DSP: deep convolutional network with double spatial pyramid for tongue image segmentation[J]. INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION,2024,23(3).
APA
Chen, Yuhan,Li, Qingfeng,Lu, Dongxin,Ke, Wende,Cui, Wenming,&Kou, Lei.(2024).Deep-DSP: deep convolutional network with double spatial pyramid for tongue image segmentation.INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION,23(3).
MLA
Chen, Yuhan,et al."Deep-DSP: deep convolutional network with double spatial pyramid for tongue image segmentation".INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION 23.3(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chen, Yuhan]的文章
[Li, Qingfeng]的文章
[Lu, Dongxin]的文章
百度学术
百度学术中相似的文章
[Chen, Yuhan]的文章
[Li, Qingfeng]的文章
[Lu, Dongxin]的文章
必应学术
必应学术中相似的文章
[Chen, Yuhan]的文章
[Li, Qingfeng]的文章
[Lu, Dongxin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。