中文版 | English
题名

Efficient learning of mixed-state tomography for photonic quantum walk

作者
通讯作者Xu, Xiao-Ye; Yung, Man-Hong; Han, Yong-Jian; Li, Chuan-Feng
发表日期
2024-03-15
DOI
发表期刊
ISSN
2375-2548
卷号10期号:11
摘要
Noise-enhanced applications in open quantum walk (QW) has recently seen a surge due to their ability to improve performance. However, verifying the success of open QW is challenging, as mixed-state tomography is a resource-intensive process, and implementing all required measurements is almost impossible due to various physical constraints. To address this challenge, we present a neural-network-based method for reconstructing mixed states with a high fidelity (similar to 97.5%) while costing only 50% of the number of measurements typically required for open discrete-time QW in one dimension. Our method uses a neural density operator that models the system and environment, followed by a generalized natural gradient descent procedure that significantly speeds up the training process. Moreover, we introduce a compact interferometric measurement device, improving the scalability of our photonic QW setup that enables experimental learning of mixed states. Our results demonstrate that highly expressive neural networks can serve as powerful alternatives to traditional state tomography.
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
Innovation Program for Quantum Science and Technology[2021Zd0301200] ; National Natural Science Foundation of China["12022401","62075207","11874343","12104433","12374336","12304552","11821404","12204468"] ; Fundamental Research Funds for the Central Universities["WK2470000030","WK2030000081"] ; CAS Youth Innovation Promotion Association[2020447] ; China Postdoctoral Science Foundation[2021 M703108]
WOS研究方向
Science & Technology - Other Topics
WOS类目
Multidisciplinary Sciences
WOS记录号
WOS:001190089500008
出版者
来源库
Web of Science
引用统计
被引频次[WOS]:4
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/788700
专题理学院_物理系
量子科学与工程研究院
作者单位
1.Univ Sci & Technol China, CAS Key Lab Quantum Informat, Hefei 230026, Peoples R China
2.Univ Sci & Technol China, CAS Ctr Excellence Quantum Informat & Quantum Phys, Hefei 230026, Peoples R China
3.Hefei Comprehens Natl Sci Ctr, Inst Artificial Intelligence, Hefei 230031, Peoples R China
4.Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Peoples R China
5.Univ Sci & Technol China, Hefei Natl Lab, Hefei 230088, Peoples R China
6.Yangtze Delta Reg Ind Innovat Ctr Quantum & Inform, Suzhou 215100, Peoples R China
7.Southern Univ Sci & Technol, Inst Quantum Sci & Engn, Shenzhen 518055, Peoples R China
通讯作者单位量子科学与工程研究院
推荐引用方式
GB/T 7714
Wang, Qin-Qin,Dong, Shaojun,Li, Xiao-Wei,et al. Efficient learning of mixed-state tomography for photonic quantum walk[J]. SCIENCE ADVANCES,2024,10(11).
APA
Wang, Qin-Qin.,Dong, Shaojun.,Li, Xiao-Wei.,Xu, Xiao-Ye.,Wang, Chao.,...&Guo, Guang-Can.(2024).Efficient learning of mixed-state tomography for photonic quantum walk.SCIENCE ADVANCES,10(11).
MLA
Wang, Qin-Qin,et al."Efficient learning of mixed-state tomography for photonic quantum walk".SCIENCE ADVANCES 10.11(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang, Qin-Qin]的文章
[Dong, Shaojun]的文章
[Li, Xiao-Wei]的文章
百度学术
百度学术中相似的文章
[Wang, Qin-Qin]的文章
[Dong, Shaojun]的文章
[Li, Xiao-Wei]的文章
必应学术
必应学术中相似的文章
[Wang, Qin-Qin]的文章
[Dong, Shaojun]的文章
[Li, Xiao-Wei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。