中文版 | English
题名

Applying Feature Transformation-Based Domain Confusion to Neural Network for the Denoising of Dispersion Spectrograms

作者
通讯作者Chen, Xiaofei
发表日期
2024
DOI
发表期刊
ISSN
0895-0695
EISSN
1938-2057
卷号95期号:1
摘要
Ambient noise tomography has been widely used to estimate the shear-wave velocity structure of the Earth. A key step in this method is to pick dispersions from dispersion spectrograms. Using the frequency-Bessel (F-J) transform, the generated spectrograms can provide more dispersion information by including higher modes in addition to the fundamental mode. With the increasing availability of these spectrograms, manually picking dispersion curves is highly time and energy consuming. Consequently, neural networks have been used for automatically picking dispersions. Dispersion curves are picked based on deep learning mainly for denoising these spectrograms. In several studies, the neural network was solely trained, and its performance was verified for the denoising. However, they all learn single-source data in the training of neural network. It will lead the regionality of trained neural network. Even if we can use domain adaptation to improve its performance and achieve some success, there are still some spectrograms that cannot be solved effectively. Therefore, multisources training is useful and could reduce the regionality in training stage. Normally, dispersion spectrograms from multisources have feature differences of dispersion curves, especially for higher modes in F-J spectrograms. Thus, we propose a training strategy based on domain confusion through which the neural network effectively learns spectrograms from multisources. After domain confusion, the trained neural network can effectively process large number of test data and help us easily obtain more dispersion curves automatically. The proposed study can provide a deep insight into the denoising of dispersion spectrograms by neural network and facilitate ambient noise tomography.
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
Guangdong Provincial Key Laboratory of Geophysical High -resolution Imaging Technology[2022B1212010002] ; National Natural Science Foundation of China["U1901602","41790465"] ; Shenzhen Science and Technology Program[KQTD20170810111725321] ; Shenzhen Key Laboratory of Deep Offshore Oil and Gas Exploration Technology[ZDSYS20190902093007855] ; Leading talents of the Guangdong province program[2016LJ06N652]
WOS研究方向
Geochemistry & Geophysics
WOS类目
Geochemistry & Geophysics
WOS记录号
WOS:001198646900002
出版者
ESI学科分类
GEOSCIENCES
来源库
Web of Science
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/788705
专题理学院_地球与空间科学系
南方科技大学
作者单位
1.Southern Univ Sci & Technol, Shenzhen Key Lab Deep Offshore Oil & Gas Explorat, Shenzhen, Guangdong, Peoples R China
2.Southern Univ Sci & Technol, Dept Earth & Space Sci, Shenzhen, Guangdong, Peoples R China
3.Southern Univ Sci & Technol, Guangdong Prov Key Lab Geophys High Resolut Imagin, Shenzhen, Peoples R China
4.Natl Engn Res Ctr Digital Construct & Evaluat Urba, China Railway Design Corp, Tianjin, Peoples R China
第一作者单位南方科技大学
通讯作者单位南方科技大学;  地球与空间科学系
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Song, Weibin,Yuan, Shichuan,Cheng, Ming,et al. Applying Feature Transformation-Based Domain Confusion to Neural Network for the Denoising of Dispersion Spectrograms[J]. SEISMOLOGICAL RESEARCH LETTERS,2024,95(1).
APA
Song, Weibin,Yuan, Shichuan,Cheng, Ming,Wang, Guanchao,Li, Yilong,&Chen, Xiaofei.(2024).Applying Feature Transformation-Based Domain Confusion to Neural Network for the Denoising of Dispersion Spectrograms.SEISMOLOGICAL RESEARCH LETTERS,95(1).
MLA
Song, Weibin,et al."Applying Feature Transformation-Based Domain Confusion to Neural Network for the Denoising of Dispersion Spectrograms".SEISMOLOGICAL RESEARCH LETTERS 95.1(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Song, Weibin]的文章
[Yuan, Shichuan]的文章
[Cheng, Ming]的文章
百度学术
百度学术中相似的文章
[Song, Weibin]的文章
[Yuan, Shichuan]的文章
[Cheng, Ming]的文章
必应学术
必应学术中相似的文章
[Song, Weibin]的文章
[Yuan, Shichuan]的文章
[Cheng, Ming]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。