题名 | On the size distribution of the fixed-length Levenshtein balls with radius one |
作者 | |
通讯作者 | Wang, Qi |
发表日期 | 2024-04-01
|
DOI | |
发表期刊 | |
ISSN | 0925-1022
|
EISSN | 1573-7586
|
卷号 | 92页码:2253-2265 |
摘要 | The fixed-length Levenshtein (FLL) distance between two words x,y is an element of Zmn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{x}, \varvec{y}\in \mathbb {Z}_m<^>n$$\end{document} is the smallest integer t such that x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{x}$$\end{document} can be transformed to y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{y}$$\end{document} by t insertions and t deletions. The size of a ball in the FLL metric is a fundamental yet challenging problem. Very recently, Bar-Lev, Etzion, and Yaakobi explicitly determined the minimum, maximum and average sizes of the FLL balls with radius one, respectively. In this paper, based on these results, we further prove that the size of the FLL balls with radius one is highly concentrated around its mean by Azuma's inequality. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
WOS研究方向 | Computer Science
; Mathematics
|
WOS类目 | Computer Science, Theory & Methods
; Mathematics, Applied
|
WOS记录号 | WOS:001197351100001
|
出版者 | |
EI入藏号 | 20241515851636
|
EI分类号 | Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
|
ESI学科分类 | COMPUTER SCIENCE
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:1
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/788710 |
专题 | 工学院_计算机科学与工程系 南方科技大学 |
作者单位 | 1.Univ Maryland, Dept Elect & Comp Engn, College Pk, MD 20742 USA 2.Univ Maryland, Inst Syst Res, College Pk, MD 20742 USA 3.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen 518055, Guangdong, Peoples R China 4.Southern Univ Sci & Technol, Natl Ctr Appl Math Shenzhen, Shenzhen 518055, Guangdong, Peoples R China |
通讯作者单位 | 计算机科学与工程系; 南方科技大学 |
推荐引用方式 GB/T 7714 |
Wang, Geyang,Wang, Qi. On the size distribution of the fixed-length Levenshtein balls with radius one[J]. DESIGNS CODES AND CRYPTOGRAPHY,2024,92:2253-2265.
|
APA |
Wang, Geyang,&Wang, Qi.(2024).On the size distribution of the fixed-length Levenshtein balls with radius one.DESIGNS CODES AND CRYPTOGRAPHY,92,2253-2265.
|
MLA |
Wang, Geyang,et al."On the size distribution of the fixed-length Levenshtein balls with radius one".DESIGNS CODES AND CRYPTOGRAPHY 92(2024):2253-2265.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论