中文版 | English
题名

On the size distribution of the fixed-length Levenshtein balls with radius one

作者
通讯作者Wang, Qi
发表日期
2024-04-01
DOI
发表期刊
ISSN
0925-1022
EISSN
1573-7586
卷号92页码:2253-2265
摘要
The fixed-length Levenshtein (FLL) distance between two words x,y is an element of Zmn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{x}, \varvec{y}\in \mathbb {Z}_m<^>n$$\end{document} is the smallest integer t such that x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{x}$$\end{document} can be transformed to y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{y}$$\end{document} by t insertions and t deletions. The size of a ball in the FLL metric is a fundamental yet challenging problem. Very recently, Bar-Lev, Etzion, and Yaakobi explicitly determined the minimum, maximum and average sizes of the FLL balls with radius one, respectively. In this paper, based on these results, we further prove that the size of the FLL balls with radius one is highly concentrated around its mean by Azuma's inequality.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
WOS研究方向
Computer Science ; Mathematics
WOS类目
Computer Science, Theory & Methods ; Mathematics, Applied
WOS记录号
WOS:001197351100001
出版者
EI入藏号
20241515851636
EI分类号
Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
ESI学科分类
COMPUTER SCIENCE
来源库
Web of Science
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/788710
专题工学院_计算机科学与工程系
南方科技大学
作者单位
1.Univ Maryland, Dept Elect & Comp Engn, College Pk, MD 20742 USA
2.Univ Maryland, Inst Syst Res, College Pk, MD 20742 USA
3.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen 518055, Guangdong, Peoples R China
4.Southern Univ Sci & Technol, Natl Ctr Appl Math Shenzhen, Shenzhen 518055, Guangdong, Peoples R China
通讯作者单位计算机科学与工程系;  南方科技大学
推荐引用方式
GB/T 7714
Wang, Geyang,Wang, Qi. On the size distribution of the fixed-length Levenshtein balls with radius one[J]. DESIGNS CODES AND CRYPTOGRAPHY,2024,92:2253-2265.
APA
Wang, Geyang,&Wang, Qi.(2024).On the size distribution of the fixed-length Levenshtein balls with radius one.DESIGNS CODES AND CRYPTOGRAPHY,92,2253-2265.
MLA
Wang, Geyang,et al."On the size distribution of the fixed-length Levenshtein balls with radius one".DESIGNS CODES AND CRYPTOGRAPHY 92(2024):2253-2265.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang, Geyang]的文章
[Wang, Qi]的文章
百度学术
百度学术中相似的文章
[Wang, Geyang]的文章
[Wang, Qi]的文章
必应学术
必应学术中相似的文章
[Wang, Geyang]的文章
[Wang, Qi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。