题名 | A Scale-Invariant Relaxation in Low-Rank Tensor Recovery with an Application to Tensor Completion |
作者 | |
通讯作者 | Zheng, Huiwen |
发表日期 | 2024
|
DOI | |
发表期刊 | |
ISSN | 1936-4954
|
卷号 | 17期号:1 |
摘要 | In this paper, we consider a low -rank tensor recovery problem. Based on the tensor singular value decomposition (t-SVD), we propose the ratio of the tensor nuclear norm and the tensor Frobenius norm (TNF) as a novel nonconvex surrogate of tensor's tubal rank. The rationale of the proposed model for enforcing a low -rank structure is analyzed as its theoretical properties. Specifically, we introduce a null space property (NSP) type condition, under which a low -rank tensor is a local minimum for the proposed TNF recovery model. Numerically, we consider a low -rank tensor completion problem as a specific application of tensor recovery and employ the alternating direction method of multipliers (ADMM) to secure a model solution with guaranteed subsequential convergence under mild conditions. Extensive experiments demonstrate the superiority of our proposed model over state-of-the-art methods. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | NSF grant CAREER[1846690]
; Natural Science Foundation of China[12201286]
; Shenzhen Science and Technology Program[20231115165836001]
; HKRGC[CityU11301120]
; National Key R\&D Program of China[2023YFA1011400]
; Shenzhen Fundamental Research Program[JCYJ20220818100602005]
|
WOS研究方向 | Computer Science
; Mathematics
; Imaging Science & Photographic Technology
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Software Engineering
; Mathematics, Applied
; Imaging Science & Photographic Technology
|
WOS记录号 | WOS:001196417100001
|
出版者 | |
来源库 | Web of Science
|
引用统计 | |
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/788712 |
专题 | 理学院_统计与数据科学系 |
作者单位 | 1.Southern Univ Sci & Technol, Dept Stat & Data Sci, Shenzhen 518005, Guangdong, Peoples R China 2.Univ North Carolina Chapel Hill, Dept Math, Chapel Hill, NC 27599 USA 3.Univ North Carolina Chapel Hill, Sch Data Sci & Soc, Chapel Hill, NC 27599 USA 4.Natl Ctr Appl Math Shenzhen, Shenzhen 518055, Guangdong, Peoples R China |
第一作者单位 | 统计与数据科学系 |
通讯作者单位 | 统计与数据科学系 |
第一作者的第一单位 | 统计与数据科学系 |
推荐引用方式 GB/T 7714 |
Zheng, Huiwen,Lou, Yifei,Tian, Guoliang,et al. A Scale-Invariant Relaxation in Low-Rank Tensor Recovery with an Application to Tensor Completion[J]. SIAM JOURNAL ON IMAGING SCIENCES,2024,17(1).
|
APA |
Zheng, Huiwen,Lou, Yifei,Tian, Guoliang,&Wang, Chao.(2024).A Scale-Invariant Relaxation in Low-Rank Tensor Recovery with an Application to Tensor Completion.SIAM JOURNAL ON IMAGING SCIENCES,17(1).
|
MLA |
Zheng, Huiwen,et al."A Scale-Invariant Relaxation in Low-Rank Tensor Recovery with an Application to Tensor Completion".SIAM JOURNAL ON IMAGING SCIENCES 17.1(2024).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论