中文版 | English
题名

Evaluating ChatGPT-4.0's data analytic proficiency in epidemiological studies: A comparative analysis with SAS, SPSS, and R

作者
通讯作者Huang, Yeen
发表日期
2024
DOI
发表期刊
ISSN
2047-2978
EISSN
2047-2986
卷号14
摘要
Background OpenAI's Chat Generative Pre -trained Transformer 4.0 (ChatGPT-4), an emerging artificial intelligence (AI) -based large language model (LLM), has been receiving increasing attention from the medical research community for its innovative 'Data Analyst' feature. We aimed to compare the capabilities of ChatGPT-4 against traditional biostatistical software (i.e. SAS, SPSS, R) in statistically analysing epidemiological research data. Methods We used a data set from the China Health and Nutrition Survey, comprising 9317 participants and 29 variables (e.g. gender, age, educational level, marital status, income, occupation, weekly working hours, survival status). Two researchers independently evaluated the data analysis capabilities of GPT-4's 'Data Analyst' feature against SAS, SPSS, and R across three commonly used epidemiological analysis methods: Descriptive statistics, intergroup analysis, and correlation analysis. We used an internally developed evaluation scale to assess and compare the consistency of results, analytical efficiency of coding or operations, user -friendliness, and overall performance between ChatGPT-4, SAS, SPSS, and R. Results In descriptive statistics, ChatGPT-4 showed high consistency of results, greater analytical efficiency of code or operations, and more intuitive user -friendliness compared to SAS, SPSS, and R. In intergroup comparisons and correlational analyses, despite minor discrepancies in statistical outcomes for certain analysis tasks with SAS, SPSS, and R, ChatGPT-4 maintained high analytical efficiency and exceptional user -friendliness. Thus, employing ChatGPT-4 can significantly lower the operational threshold for conducting epidemiological data analysis while maintaining consistency with traditional biostatistical software's outcome, requiring only specific, clear analysis instructions without any additional operations or code writing. Conclusions We found ChatGPT-4 to be a powerful auxiliary tool for statistical analysis in epidemiological research. However, it showed limitations in result consistency and in applying more advanced statistical methods. Therefore, we advocate for the use of ChatGPT-4 in supporting researchers with intermediate experience in data analysis. With AI technologies like LLMs advancing rapidly, their integration with data analysis platforms promises to lower operational barriers, thereby enabling researchers to dedicate greater focus to the nuanced interpretation of analysis results. This development is likely to significantly advance epidemiological and medical research.
相关链接[来源记录]
收录类别
语种
英语
学校署名
第一 ; 通讯
资助项目
Shenzhen Science and Technology Program[JCYJ20220531091212028]
WOS研究方向
Public, Environmental & Occupational Health
WOS类目
Public, Environmental & Occupational Health
WOS记录号
WOS:001194538100001
出版者
来源库
Web of Science
引用统计
被引频次[WOS]:4
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/788725
专题南方科技大学医学院_公共卫生及应急管理学院
作者单位
1.Southern Univ Sci & Technol, Sch Publ Hlth & Emergency Management, Shenzhen, Guangdong, Peoples R China
2.Xizang Minzu Univ, Sch Med, Key Lab Mol Genet Mech & Intervent Res, High Altitude Dis Tibet Autonomous Reg, Xianyang, Xizang, Peoples R China
3.Xizang Minzu Univ, Sch Med, Key Lab High Altitude Hypoxia Environm & Life Hlth, Xianyang, Xizang, Peoples R China
4.Southeast Univ, Sch Publ Hlth, Dept Nutr & Food Hyg, Key Lab Environm Med & Engn,Minist Educ, Nanjing, Jiangsu, Peoples R China
5.Shenzhen Prevent & Treatment Ctr Occupat Dis, Phys & Chem Testing Inst, Shenzhen, Guangdong, Peoples R China
6.Shenzhen Prevent & Treatment Ctr Occupat Dis, Occupat Hazard Assessment Inst, Shenzhen, Guangdong, Peoples R China
7.Southern Univ Sci & Technol, Sch Publ Hlth & Emergency Management, 1088 Xueyuan Ave, Shenzhen 518055, Peoples R China
第一作者单位公共卫生及应急管理学院
通讯作者单位公共卫生及应急管理学院
第一作者的第一单位公共卫生及应急管理学院
推荐引用方式
GB/T 7714
Huang, Yeen,Wu, Ruipeng,He, Juntao,et al. Evaluating ChatGPT-4.0's data analytic proficiency in epidemiological studies: A comparative analysis with SAS, SPSS, and R[J]. JOURNAL OF GLOBAL HEALTH,2024,14.
APA
Huang, Yeen,Wu, Ruipeng,He, Juntao,&Xiang, Yingping.(2024).Evaluating ChatGPT-4.0's data analytic proficiency in epidemiological studies: A comparative analysis with SAS, SPSS, and R.JOURNAL OF GLOBAL HEALTH,14.
MLA
Huang, Yeen,et al."Evaluating ChatGPT-4.0's data analytic proficiency in epidemiological studies: A comparative analysis with SAS, SPSS, and R".JOURNAL OF GLOBAL HEALTH 14(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Huang, Yeen]的文章
[Wu, Ruipeng]的文章
[He, Juntao]的文章
百度学术
百度学术中相似的文章
[Huang, Yeen]的文章
[Wu, Ruipeng]的文章
[He, Juntao]的文章
必应学术
必应学术中相似的文章
[Huang, Yeen]的文章
[Wu, Ruipeng]的文章
[He, Juntao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。