中文版 | English
题名

Probabilistic Forecasting with Generative Networks via Scoring Rule Minimization

作者
通讯作者Pacchiardi, Lorenzo
发表日期
2024
发表期刊
ISSN
1532-4435
卷号25
摘要
Probabilistic forecasting relies on past observations to provide a probability distribution for a future outcome, which is often evaluated against the realization using a scoring rule. Here, we perform probabilistic forecasting with generative neural networks, which parametrize distributions on high -dimensional spaces by transforming draws from a latent variable. Generative networks are typically trained in an adversarial framework. In contrast, we propose to train generative networks to minimize a predictive -sequential (or prequential) scoring rule on a recorded temporal sequence of the phenomenon of interest, which is appealing as it corresponds to the way forecasting systems are routinely evaluated. Adversarial -free minimization is possible for some scoring rules; hence, our framework avoids the cumbersome hyperparameter tuning and uncertainty underestimation due to unstable adversarial training, thus unlocking reliable use of generative networks in probabilistic forecasting. Further, we prove consistency of the minimizer of our objective with dependent data, while adversarial training assumes independence. We perform simulation studies on two chaotic dynamical models and a benchmark data set of global weather observations; for this last example, we define scoring rules for spatial data by drawing from the relevant literature. Our method outperforms state-of-the-art adversarial approaches, especially in probabilistic calibration, while requiring less hyperparameter tuning.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
其他
资助项目
EPSRC["EP/V025899/1","EP/T017112/1","EP/L016710/1"] ; MRC through the OxWaSP CDT programme[EP/L016710/1] ; NERC[NE/T00973X/1] ; ESiWACE Horizon 2020 project[823988] ; MAELSTROM EuroHPC Joint Undertaking project[955513]
WOS研究方向
Automation & Control Systems ; Computer Science
WOS类目
Automation & Control Systems ; Computer Science, Artificial Intelligence
WOS记录号
WOS:001185341600001
出版者
ESI学科分类
COMPUTER SCIENCE
来源库
Web of Science
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/788737
专题工学院_计算机科学与工程系
作者单位
1.Univ Oxford, Dept Stat, Oxford OX1 SLB, England
2.Univ Warwick, Dept Stat, Coventry CV4 7AL, W Midlands, England
3.European Ctr Medium Range Weather Forecasts, Earth Syst Modelling Sect, Reading RG2 9AX, Berks, England
4.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen, Peoples R China
推荐引用方式
GB/T 7714
Pacchiardi, Lorenzo,Adewoyin, Rilwan A.,Dueben, Peter,et al. Probabilistic Forecasting with Generative Networks via Scoring Rule Minimization[J]. JOURNAL OF MACHINE LEARNING RESEARCH,2024,25.
APA
Pacchiardi, Lorenzo,Adewoyin, Rilwan A.,Dueben, Peter,&Dutta, Ritabrata.(2024).Probabilistic Forecasting with Generative Networks via Scoring Rule Minimization.JOURNAL OF MACHINE LEARNING RESEARCH,25.
MLA
Pacchiardi, Lorenzo,et al."Probabilistic Forecasting with Generative Networks via Scoring Rule Minimization".JOURNAL OF MACHINE LEARNING RESEARCH 25(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Pacchiardi, Lorenzo]的文章
[Adewoyin, Rilwan A.]的文章
[Dueben, Peter]的文章
百度学术
百度学术中相似的文章
[Pacchiardi, Lorenzo]的文章
[Adewoyin, Rilwan A.]的文章
[Dueben, Peter]的文章
必应学术
必应学术中相似的文章
[Pacchiardi, Lorenzo]的文章
[Adewoyin, Rilwan A.]的文章
[Dueben, Peter]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。