题名 | Polymer-Unit Graph: Advancing Interpretability in Graph Neural Network Machine Learning for Organic Polymer Semiconductor Materials |
作者 | |
通讯作者 | Ye, Caichao; Zhang, Wenqing |
发表日期 | 2024-03-29
|
DOI | |
发表期刊 | |
ISSN | 1549-9618
|
EISSN | 1549-9626
|
卷号 | 20期号:7页码:2908-2920 |
摘要 | The graph representation of complex materials plays a crucial role in the field of inorganic and organic materials investigations for developing data-centric materials science, such as those using graph neural networks (GNNs). However, the currently prevalent GNN models are primarily employed for investigating periodic crystals and organic small molecule data, yet they still encounter challenges in terms of interpretability and computational efficiency when applied to polymer monomers and organic macromolecules data. There is still a lack of graph representation of organic polymers and macromolecules specifically tailored for GNN models to explore the structural characteristics. The Polymer-unit Graph, a novel coarse-grained graph representation method introduced in study, is dedicated to expressing and analyzing polymers and macromolecules. By incorporating the Polymer-unit Graph into the GNN models and analyzing the organic semiconductor (OSC) materials database, it becomes possible to uncover intricate structure-property relationships involving branched-chain engineering, fluoridation substitution, and donor-acceptor combination effects on the elementary structure of OSC polymers. Furthermore, the Polymer-unit Graph enables visualizing the relationship between target properties and polymer units while reducing training time by an impressive 98% and minimizing molecular graph representation models. In conclusion, the Polymer-unit Graph successfully integrates the concept of Polymer-unit into the field of GNNs, enabling more accurate analysis and understanding of organic polymers and macromolecules. |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | , National Science Foundation[2022YFA1203400]
; National Key RAMP
; D Program of China[92163212]
; Natural Science Foundation of China[2022A1515110628]
; Guangdong Basic and Applied Basic Research Foundation[2019B030301001]
; Guangdong Provincial Key Laboratory of Computational Science and Material Design[2017ZT07C062]
; Guangdong Innovation Research Team Project[CBET 2311117]
|
WOS研究方向 | Chemistry
; Physics
|
WOS类目 | Chemistry, Physical
; Physics, Atomic, Molecular & Chemical
|
WOS记录号 | WOS:001194384800001
|
出版者 | |
来源库 | Web of Science
|
出版状态 | 正式出版
|
引用统计 |
被引频次[WOS]:1
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/788782 |
专题 | 工学院_材料科学与工程系 南方科技大学 前沿与交叉科学研究院 |
作者单位 | 1.Southern Univ Sci & Technol, Dept Mat Sci & Engn, Shenzhen 518055, Peoples R China 2.Southern Univ Sci & Technol, Guangdong Prov Key Lab Computat Sci & Mat Design, Shenzhen 518055, Peoples R China 3.Nanjing Univ Sci & Technol, Sch Chem & Chem Engn, Key Lab Soft Chem & Funct Mat MOE, Nanjing 210094, Peoples R China 4.Shanghai Univ, Mat Genome Inst, Shanghai 200444, Peoples R China 5.CALTECH, Mat & Proc Simulat Ctr MSC, Pasadena, CA 91125 USA 6.Southern Univ Sci & Technol, Acad Adv Interdisciplinary Studies, Shenzhen 518055, Peoples R China |
第一作者单位 | 材料科学与工程系; 南方科技大学 |
通讯作者单位 | 材料科学与工程系; 南方科技大学; 前沿与交叉科学研究院 |
第一作者的第一单位 | 材料科学与工程系 |
推荐引用方式 GB/T 7714 |
Zhang, Xinyue,Sheng, Ye,Liu, Xiumin,et al. Polymer-Unit Graph: Advancing Interpretability in Graph Neural Network Machine Learning for Organic Polymer Semiconductor Materials[J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION,2024,20(7):2908-2920.
|
APA |
Zhang, Xinyue.,Sheng, Ye.,Liu, Xiumin.,Yang, Jiong.,Goddard, William A., III.,...&Zhang, Wenqing.(2024).Polymer-Unit Graph: Advancing Interpretability in Graph Neural Network Machine Learning for Organic Polymer Semiconductor Materials.JOURNAL OF CHEMICAL THEORY AND COMPUTATION,20(7),2908-2920.
|
MLA |
Zhang, Xinyue,et al."Polymer-Unit Graph: Advancing Interpretability in Graph Neural Network Machine Learning for Organic Polymer Semiconductor Materials".JOURNAL OF CHEMICAL THEORY AND COMPUTATION 20.7(2024):2908-2920.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
67. zhang-et-al-2024(5575KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论