中文版 | English
题名

Polymer-Unit Graph: Advancing Interpretability in Graph Neural Network Machine Learning for Organic Polymer Semiconductor Materials

作者
通讯作者Ye, Caichao; Zhang, Wenqing
发表日期
2024-03-29
DOI
发表期刊
ISSN
1549-9618
EISSN
1549-9626
卷号20期号:7页码:2908-2920
摘要

The graph representation of complex materials plays a crucial role in the field of inorganic and organic materials investigations for developing data-centric materials science, such as those using graph neural networks (GNNs). However, the currently prevalent GNN models are primarily employed for investigating periodic crystals and organic small molecule data, yet they still encounter challenges in terms of interpretability and computational efficiency when applied to polymer monomers and organic macromolecules data. There is still a lack of graph representation of organic polymers and macromolecules specifically tailored for GNN models to explore the structural characteristics. The Polymer-unit Graph, a novel coarse-grained graph representation method introduced in study, is dedicated to expressing and analyzing polymers and macromolecules. By incorporating the Polymer-unit Graph into the GNN models and analyzing the organic semiconductor (OSC) materials database, it becomes possible to uncover intricate structure-property relationships involving branched-chain engineering, fluoridation substitution, and donor-acceptor combination effects on the elementary structure of OSC polymers. Furthermore, the Polymer-unit Graph enables visualizing the relationship between target properties and polymer units while reducing training time by an impressive 98% and minimizing molecular graph representation models. In conclusion, the Polymer-unit Graph successfully integrates the concept of Polymer-unit into the field of GNNs, enabling more accurate analysis and understanding of organic polymers and macromolecules.

相关链接[来源记录]
收录类别
语种
英语
学校署名
第一 ; 通讯
资助项目
, National Science Foundation[2022YFA1203400] ; National Key RAMP ; D Program of China[92163212] ; Natural Science Foundation of China[2022A1515110628] ; Guangdong Basic and Applied Basic Research Foundation[2019B030301001] ; Guangdong Provincial Key Laboratory of Computational Science and Material Design[2017ZT07C062] ; Guangdong Innovation Research Team Project[CBET 2311117]
WOS研究方向
Chemistry ; Physics
WOS类目
Chemistry, Physical ; Physics, Atomic, Molecular & Chemical
WOS记录号
WOS:001194384800001
出版者
来源库
Web of Science
出版状态
正式出版
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/788782
专题工学院_材料科学与工程系
南方科技大学
前沿与交叉科学研究院
作者单位
1.Southern Univ Sci & Technol, Dept Mat Sci & Engn, Shenzhen 518055, Peoples R China
2.Southern Univ Sci & Technol, Guangdong Prov Key Lab Computat Sci & Mat Design, Shenzhen 518055, Peoples R China
3.Nanjing Univ Sci & Technol, Sch Chem & Chem Engn, Key Lab Soft Chem & Funct Mat MOE, Nanjing 210094, Peoples R China
4.Shanghai Univ, Mat Genome Inst, Shanghai 200444, Peoples R China
5.CALTECH, Mat & Proc Simulat Ctr MSC, Pasadena, CA 91125 USA
6.Southern Univ Sci & Technol, Acad Adv Interdisciplinary Studies, Shenzhen 518055, Peoples R China
第一作者单位材料科学与工程系;  南方科技大学
通讯作者单位材料科学与工程系;  南方科技大学;  前沿与交叉科学研究院
第一作者的第一单位材料科学与工程系
推荐引用方式
GB/T 7714
Zhang, Xinyue,Sheng, Ye,Liu, Xiumin,et al. Polymer-Unit Graph: Advancing Interpretability in Graph Neural Network Machine Learning for Organic Polymer Semiconductor Materials[J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION,2024,20(7):2908-2920.
APA
Zhang, Xinyue.,Sheng, Ye.,Liu, Xiumin.,Yang, Jiong.,Goddard, William A., III.,...&Zhang, Wenqing.(2024).Polymer-Unit Graph: Advancing Interpretability in Graph Neural Network Machine Learning for Organic Polymer Semiconductor Materials.JOURNAL OF CHEMICAL THEORY AND COMPUTATION,20(7),2908-2920.
MLA
Zhang, Xinyue,et al."Polymer-Unit Graph: Advancing Interpretability in Graph Neural Network Machine Learning for Organic Polymer Semiconductor Materials".JOURNAL OF CHEMICAL THEORY AND COMPUTATION 20.7(2024):2908-2920.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
67. zhang-et-al-2024(5575KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang, Xinyue]的文章
[Sheng, Ye]的文章
[Liu, Xiumin]的文章
百度学术
百度学术中相似的文章
[Zhang, Xinyue]的文章
[Sheng, Ye]的文章
[Liu, Xiumin]的文章
必应学术
必应学术中相似的文章
[Zhang, Xinyue]的文章
[Sheng, Ye]的文章
[Liu, Xiumin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。