中文版 | English
题名

A Comparison of Inversion Methods for Surrogate-Based Groundwater Contamination Source Identification With Varying Degrees of Model Complexity

作者
通讯作者Guo, Zhilin
发表日期
2024-04-01
DOI
发表期刊
ISSN
0043-1397
EISSN
1944-7973
卷号60期号:4
摘要
["Accurate identification of groundwater contamination sources is important for designing efficacious site remediation strategies. Currently, the methods for identifying contamination sources mainly fall into three distinct categories: simulation optimization, Bayesian inference, and data assimilation. Each method has its own advantages and disadvantages under specific site conditions. To evaluate the applicability of these methods, we chose one representative inversion algorithm from each category, namely the Improved Butterfly Optimization Algorithm (IBOA) for simulation optimization, the Ensemble Smoother with Multiple Data Assimilation (ES-MDA) for data assimilation, and the DiffeRential Evolution Adaptive Metropolis with a Snooker Update and Sampling from a Past Archive (DREAM(ZS)) for Bayesian inference. We conducted a comprehensive evaluation of these methods' performance under different model complexities, employing a surrogate model as a substitute for the complex forward model. By addressing two distinct problems involving conservative pollutant transport and Light Non-Aqueous Phase Liquid (LNAPL) transport with biodegradation, we employed four criteria (elapsed time, result accuracy, posterior probability distribution, and noise resistance) for evaluation. The findings unequivocally indicate that DREAM(ZS) outperforms others in terms of result accuracy and posterior probability distribution. It also adeptly navigates the interrelations among disparate unknown variables. The strength of ES-MDA lies in its efficiency. It achieves relatively satisfactory results with a reduced computational burden. In contrast, IBOA underperforms in both test problems. In terms of resistance to noise, both DREAM(ZS) and ES-MDA perform better than IBOA does.","Hyperparameter optimization improves the accuracy of shallow learning surrogate models, making them comparable to deep learning models Three mainstream inversion methods were compared in elapsed time, result accuracy, posterior probability distribution and noise resistance Data assimilation and Bayesian inference methods are recommended for groundwater contamination source identification"]
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
Guangdong Provincial Basic and Applied Basic Research Fund[2021A1515110781] ; Shenzhen Science and Technology Innovation Committee[JCYJ20210324105009024] ; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control[2023B1212060002] ; null[42377045] ; null[42207062]
WOS研究方向
Environmental Sciences & Ecology ; Marine & Freshwater Biology ; Water Resources
WOS类目
Environmental Sciences ; Limnology ; Water Resources
WOS记录号
WOS:001192218800001
出版者
ESI学科分类
ENVIRONMENT/ECOLOGY
来源库
Web of Science
引用统计
被引频次[WOS]:3
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/788797
专题工学院_环境科学与工程学院
作者单位
1.Southern Univ Sci & Technol, Sch Environm Sci & Engn, State Environm Protect Key Lab Integrated Surface, Shenzhen, Peoples R China
2.Southern Univ Sci & Technol, Sch Environm Sci & Engn, Guangdong Prov Key Lab Soil & Groundwater Pollut C, Shenzhen, Peoples R China
3.Jilin Univ, Coll New Energy & Environm, Changchun, Peoples R China
4.EIT Inst Adv Study, Ningbo, Peoples R China
第一作者单位环境科学与工程学院
通讯作者单位环境科学与工程学院
第一作者的第一单位环境科学与工程学院
推荐引用方式
GB/T 7714
Chang, Zhenbo,Guo, Zhilin,Chen, Kewei,et al. A Comparison of Inversion Methods for Surrogate-Based Groundwater Contamination Source Identification With Varying Degrees of Model Complexity[J]. WATER RESOURCES RESEARCH,2024,60(4).
APA
Chang, Zhenbo.,Guo, Zhilin.,Chen, Kewei.,Wang, Zibo.,Zhan, Yang.,...&Zheng, Chunmiao.(2024).A Comparison of Inversion Methods for Surrogate-Based Groundwater Contamination Source Identification With Varying Degrees of Model Complexity.WATER RESOURCES RESEARCH,60(4).
MLA
Chang, Zhenbo,et al."A Comparison of Inversion Methods for Surrogate-Based Groundwater Contamination Source Identification With Varying Degrees of Model Complexity".WATER RESOURCES RESEARCH 60.4(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chang, Zhenbo]的文章
[Guo, Zhilin]的文章
[Chen, Kewei]的文章
百度学术
百度学术中相似的文章
[Chang, Zhenbo]的文章
[Guo, Zhilin]的文章
[Chen, Kewei]的文章
必应学术
必应学术中相似的文章
[Chang, Zhenbo]的文章
[Guo, Zhilin]的文章
[Chen, Kewei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。