中文版 | English
题名

A Spiking LSTM Accelerator for Automatic Speech Recognition Application Based on FPGA

作者
通讯作者Yang, Yongkui
发表日期
2024-03-01
DOI
发表期刊
EISSN
2079-9292
卷号13期号:5
摘要
Long Short-Term Memory (LSTM) finds extensive application in sequential learning tasks, notably in speech recognition. However, existing accelerators tailored for traditional LSTM networks grapple with high power consumption, primarily due to the intensive matrix-vector multiplication operations inherent to LSTM networks. In contrast, the spiking LSTM network has been designed to avoid these multiplication operations by replacing multiplication and nonlinear functions with addition and comparison. In this paper, we present an FPGA-based accelerator specifically designed for spiking LSTM networks. Firstly, we employ a low-cost circuit in the LSTM gate to significantly reduce power consumption and hardware cost. Secondly, we propose a serial-parallel processing architecture along with hardware implementation to reduce inference latency. Thirdly, we quantize and efficiently deploy the synapses of the spiking LSTM network. The power consumption of the accelerator implemented on Artix-7 and Zynq-7000 is only about 1.1 W and 0.84 W, respectively, when performing the inference for speech recognition with the Free Spoken Digit Dataset (FSDD). Additionally, the energy consumed per inference is remarkably efficient, with values of 87 mu J and 66 mu J, respectively. In comparison with dedicated accelerators designed for traditional LSTM networks, our spiking LSTM accelerator achieves a remarkable reduction in power consumption, amounting to orders of magnitude.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
第一
WOS研究方向
Computer Science ; Engineering ; Physics
WOS类目
Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Physics, Applied
WOS记录号
WOS:001182667100001
出版者
来源库
Web of Science
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/788836
专题工学院
作者单位
1.Southern Univ Sci & Technol, Coll Engn, Shenzhen 518055, Peoples R China
2.Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
3.Huazhong Univ Sci & Technol, Sch Comp Sci & Technol, Wuhan 430074, Peoples R China
第一作者单位工学院
第一作者的第一单位工学院
推荐引用方式
GB/T 7714
Yin, Tingting,Dong, Feihong,Chen, Chao,et al. A Spiking LSTM Accelerator for Automatic Speech Recognition Application Based on FPGA[J]. ELECTRONICS,2024,13(5).
APA
Yin, Tingting,Dong, Feihong,Chen, Chao,Ouyang, Chenghao,Wang, Zheng,&Yang, Yongkui.(2024).A Spiking LSTM Accelerator for Automatic Speech Recognition Application Based on FPGA.ELECTRONICS,13(5).
MLA
Yin, Tingting,et al."A Spiking LSTM Accelerator for Automatic Speech Recognition Application Based on FPGA".ELECTRONICS 13.5(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yin, Tingting]的文章
[Dong, Feihong]的文章
[Chen, Chao]的文章
百度学术
百度学术中相似的文章
[Yin, Tingting]的文章
[Dong, Feihong]的文章
[Chen, Chao]的文章
必应学术
必应学术中相似的文章
[Yin, Tingting]的文章
[Dong, Feihong]的文章
[Chen, Chao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。