中文版 | English
题名

DISCOVER: Deep identification of symbolically concise open-form partial differential equations via enhanced reinforcement learning

作者
通讯作者Chen, Yuntian
发表日期
2024-02-20
DOI
发表期刊
EISSN
2643-1564
卷号6期号:1
摘要
The working mechanisms of complex natural systems tend to abide by concise partial differential equations (PDEs). Methods that directly mine equations from data are called PDE discovery, which reveals consistent physical laws and facilitates our interactions with the natural world. In this paper, an enhanced deep reinforcement-learning framework is proposed to uncover symbolically concise open-form PDEs with little prior knowledge. Particularly, based on a symbol library of basic operators and operands, a PDE can be represented by a tree structure. A structure-aware recurrent neural network agent is designed to capture structured information, and is seamlessly combined with the sparse regression method to generate open-form PDE expressions. All of the generated PDEs are evaluated by a meticulously designed reward function by balancing fitness to data and parsimony, and updated by the model-based reinforcement learning. Customized constraints and regulations are formulated to guarantee the rationality of PDEs in terms of physics and mathematics. Numerical experiments demonstrate that our framework is capable of mining open-form governing equations of several dynamic systems, even with compound equation terms, fractional structure, and high-order derivatives. This method is also applied to a real-world problem of the oceanographic system and demonstrates great potential for knowledge discovery in more complicated circumstances with exceptional efficiency and scalability.
相关链接[来源记录]
收录类别
ESCI ; EI
语种
英语
学校署名
其他
资助项目
Shenzhen Key Laboratory of Natural Gas Hydrates[ZDSYS20200421111201738] ; China Meteorological Administration Climate Change Special Program (CMA-CCSP)[QBZ202316] ; National Natural Science Foundation of China[62106116]
WOS研究方向
Physics
WOS类目
Physics, Multidisciplinary
WOS记录号
WOS:001171476500003
出版者
来源库
Web of Science
引用统计
被引频次[WOS]:13
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/788920
专题南方科技大学
作者单位
1.Peking Univ, Coll Engn, Beijing 100871, Peoples R China
2.Eastern Inst Technol, Ningbo Inst Digital Twin, Ningbo 315200, Zhejiang, Peoples R China
3.Southern Univ Sci & Technol, Natl Ctr Appl Math Shenzhen NCAMS, Shenzhen 518000, Guangdong, Peoples R China
推荐引用方式
GB/T 7714
Du, Mengge,Chen, Yuntian,Zhang, Dongxiao. DISCOVER: Deep identification of symbolically concise open-form partial differential equations via enhanced reinforcement learning[J]. PHYSICAL REVIEW RESEARCH,2024,6(1).
APA
Du, Mengge,Chen, Yuntian,&Zhang, Dongxiao.(2024).DISCOVER: Deep identification of symbolically concise open-form partial differential equations via enhanced reinforcement learning.PHYSICAL REVIEW RESEARCH,6(1).
MLA
Du, Mengge,et al."DISCOVER: Deep identification of symbolically concise open-form partial differential equations via enhanced reinforcement learning".PHYSICAL REVIEW RESEARCH 6.1(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Du, Mengge]的文章
[Chen, Yuntian]的文章
[Zhang, Dongxiao]的文章
百度学术
百度学术中相似的文章
[Du, Mengge]的文章
[Chen, Yuntian]的文章
[Zhang, Dongxiao]的文章
必应学术
必应学术中相似的文章
[Du, Mengge]的文章
[Chen, Yuntian]的文章
[Zhang, Dongxiao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。