中文版 | English
题名

Diagnostic Prediction of portal vein thrombosis in chronic cirrhosis patients using data-driven precision medicine model

作者
通讯作者Li, Chuan-Xing; Cheng, Lixin; Li, Xun
发表日期
2024
DOI
发表期刊
ISSN
1467-5463
EISSN
1477-4054
卷号25期号:1
摘要
Background Portal vein thrombosis (PVT) is a significant issue in cirrhotic patients, necessitating early detection. This study aims to develop a data-driven predictive model for PVT diagnosis in chronic hepatitis liver cirrhosis patients.Methods We employed data from a total of 816 chronic cirrhosis patients with PVT, divided into the Lanzhou cohort (n = 468) for training and the Jilin cohort (n = 348) for validation. This dataset encompassed a wide range of variables, including general characteristics, blood parameters, ultrasonography findings and cirrhosis grading. To build our predictive model, we employed a sophisticated stacking approach, which included Support Vector Machine (SVM), Naive Bayes and Quadratic Discriminant Analysis (QDA).Results In the Lanzhou cohort, SVM and Naive Bayes classifiers effectively classified PVT cases from non-PVT cases, among the top features of which seven were shared: Portal Velocity (PV), Prothrombin Time (PT), Portal Vein Diameter (PVD), Prothrombin Time Activity (PTA), Activated Partial Thromboplastin Time (APTT), age and Child-Pugh score (CPS). The QDA model, trained based on the seven shared features on the Lanzhou cohort and validated on the Jilin cohort, demonstrated significant differentiation between PVT and non-PVT cases (AUROC = 0.73 and AUROC = 0.86, respectively). Subsequently, comparative analysis showed that our QDA model outperformed several other machine learning methods.Conclusion Our study presents a comprehensive data-driven model for PVT diagnosis in cirrhotic patients, enhancing clinical decision-making. The SVM-Naive Bayes-QDA model offers a precise approach to managing PVT in this population.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
通讯
资助项目
National Natural Science Foundation of China["32370711","32300554"] ; Shenzhen Science and Technology Program[JCYJ20220530152409020] ; Shenzhen Medical Research Fund[A2303033] ; Clinical Research Center for General Surgery of Gansu Province[20JR10FA661]
WOS研究方向
Biochemistry & Molecular Biology ; Mathematical & Computational Biology
WOS类目
Biochemical Research Methods ; Mathematical & Computational Biology
WOS记录号
WOS:001173375300080
出版者
ESI学科分类
COMPUTER SCIENCE
来源库
Web of Science
引用统计
被引频次[WOS]:3
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/788948
专题南方科技大学第一附属医院
作者单位
1.First Hosp Lanzhou Univ, Lanzhou 730000, Peoples R China
2.Southern Univ Sci & Technol, Jinan Univ, Affiliated Hosp 1, Shenzhen Peoples Hosp,Clin Med Coll 2, Shenzhen 518000, Peoples R China
3.Karolinska Inst, Resp Med Unit, Dept Med & Ctr Mol Med, S-16340 Stockholm, Sweden
4.First Hosp Lanzhou Univ, Lanzhou, Peoples R China
5.Karolinska Inst, Solna, Sweden
6.Univ Helsinki, Helsinki, Finland
7.Helsinki Univ Hosp, Helsinki, Finland
8.Great Bay Univ, Sch Comp & Informat Technol, Portsmouth, NH USA
9.Great Bay Inst Adv Study, Princeton, NJ USA
10.Lanzhou Univ, Sch Clin Med, Lanzhou, Peoples R China
11.Jilin Hepatobiliary Dis Hosp, Changchun, Peoples R China
12.Karolinska Inst, Resp Med Unit, Dept Med, Stockholm, Sweden
13.Karolinska Inst, Ctr Mol Med, Stockholm, Sweden
14.Shenzhen Peoples Hosp, bioinformat, Shenzhen, Peoples R China
15.First Hosp Lanzhou Univ, Dept Gen Surg, Lanzhou, Peoples R China
16.First Hosp Lanzhou Univ, Key Lab Biotherapy & Regenerat Med Gansu Prov, Lanzhou, Peoples R China
通讯作者单位南方科技大学第一附属医院
推荐引用方式
GB/T 7714
Li, Ying,Gao, Jing,Zheng, Xubin,et al. Diagnostic Prediction of portal vein thrombosis in chronic cirrhosis patients using data-driven precision medicine model[J]. BRIEFINGS IN BIOINFORMATICS,2024,25(1).
APA
Li, Ying.,Gao, Jing.,Zheng, Xubin.,Nie, Guole.,Qin, Jican.,...&Li, Xun.(2024).Diagnostic Prediction of portal vein thrombosis in chronic cirrhosis patients using data-driven precision medicine model.BRIEFINGS IN BIOINFORMATICS,25(1).
MLA
Li, Ying,et al."Diagnostic Prediction of portal vein thrombosis in chronic cirrhosis patients using data-driven precision medicine model".BRIEFINGS IN BIOINFORMATICS 25.1(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Li, Ying]的文章
[Gao, Jing]的文章
[Zheng, Xubin]的文章
百度学术
百度学术中相似的文章
[Li, Ying]的文章
[Gao, Jing]的文章
[Zheng, Xubin]的文章
必应学术
必应学术中相似的文章
[Li, Ying]的文章
[Gao, Jing]的文章
[Zheng, Xubin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。